In vitro characterization of anodized magnesium alloy as a potential biodegradable material for biomedical applications
Pure metals and their alloys are used to partially or completely restore bone fractures. Biodegradable metals emerged as promising candidates for fracture fixation devices since they are able to self-degrade in the body environment. The main challenge of the devices is to reach an adequate degradati...
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Artículo |
| Language: | Inglés |
| Published: |
Elsevier
2022
|
| Subjects: | |
| Online Access: | http://hdl.handle.net/20.500.12123/13546 https://www.sciencedirect.com/science/article/pii/S0013468622016206 https://doi.org/10.1016/j.electacta.2022.141463 |
| _version_ | 1855485191494041600 |
|---|---|
| author | Moreno, Julieta Merlo, Julieta Leticia Renno, Ana Claudia Canizo, Jésica Romina Buchelly, Francisco Javier Pastore, Juan Ignacio Katunar, Maria Rosa Cere, Silvia |
| author_browse | Buchelly, Francisco Javier Canizo, Jésica Romina Cere, Silvia Katunar, Maria Rosa Merlo, Julieta Leticia Moreno, Julieta Pastore, Juan Ignacio Renno, Ana Claudia |
| author_facet | Moreno, Julieta Merlo, Julieta Leticia Renno, Ana Claudia Canizo, Jésica Romina Buchelly, Francisco Javier Pastore, Juan Ignacio Katunar, Maria Rosa Cere, Silvia |
| author_sort | Moreno, Julieta |
| collection | INTA Digital |
| description | Pure metals and their alloys are used to partially or completely restore bone fractures. Biodegradable metals emerged as promising candidates for fracture fixation devices since they are able to self-degrade in the body environment. The main challenge of the devices is to reach an adequate degradation rate relative to the bone healing and also to present safe degradation by-products. Magnesium alloys are very much studied because of their promising properties, but the main limitation for their application in biomedical devices is the hydrogen evolution that results from their corrosion in aqueous media. This work assesses the effects of low potential anodizing process of AZ91 alloys in basic media on surface topography, electrochemical response, hydrogen evolution and cell attachment compared with the non-treated alloys. A comparative approach to determine the electrochemical parameters for assessing the degradation rate is also discussed. Results show that the electrochemical treatment of anodizing at low voltage in 5 mol/L KOH solution generates magnesium oxide/hydroxide on the surface which could act as a barrier to prevent fast degradation, and consequently to reduce hydrogen release. In turn, this treatment improved the adhesion of bovine embryonic fibroblasts (BEFs) and MCT3T3 pre-osteoblastic cells to the surface, showing that it could be a good candidate to be used in temporary implants. |
| format | Artículo |
| id | INTA13546 |
| institution | Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina) |
| language | Inglés |
| publishDate | 2022 |
| publishDateRange | 2022 |
| publishDateSort | 2022 |
| publisher | Elsevier |
| publisherStr | Elsevier |
| record_format | dspace |
| spelling | INTA135462022-12-06T18:22:46Z In vitro characterization of anodized magnesium alloy as a potential biodegradable material for biomedical applications Moreno, Julieta Merlo, Julieta Leticia Renno, Ana Claudia Canizo, Jésica Romina Buchelly, Francisco Javier Pastore, Juan Ignacio Katunar, Maria Rosa Cere, Silvia Fracturas Corrosión Aleaciones Metales Biodegradabilidad Fractures Corrosion In Vitro Alloys Metals Biodegradability Pure metals and their alloys are used to partially or completely restore bone fractures. Biodegradable metals emerged as promising candidates for fracture fixation devices since they are able to self-degrade in the body environment. The main challenge of the devices is to reach an adequate degradation rate relative to the bone healing and also to present safe degradation by-products. Magnesium alloys are very much studied because of their promising properties, but the main limitation for their application in biomedical devices is the hydrogen evolution that results from their corrosion in aqueous media. This work assesses the effects of low potential anodizing process of AZ91 alloys in basic media on surface topography, electrochemical response, hydrogen evolution and cell attachment compared with the non-treated alloys. A comparative approach to determine the electrochemical parameters for assessing the degradation rate is also discussed. Results show that the electrochemical treatment of anodizing at low voltage in 5 mol/L KOH solution generates magnesium oxide/hydroxide on the surface which could act as a barrier to prevent fast degradation, and consequently to reduce hydrogen release. In turn, this treatment improved the adhesion of bovine embryonic fibroblasts (BEFs) and MCT3T3 pre-osteoblastic cells to the surface, showing that it could be a good candidate to be used in temporary implants. EEA Balcarce Fil: Moreno, Julieta. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata; Argentina. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina. Fil: Merlo, Julieta Leticia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata; Argentina. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina. Fil: Renno, Ana Claudia. Federal University of São Paulo Department of Biosciences; Brasil. Fil: Canizo, Jésica Romina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Fil: Buchelly, Francisco Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata; Argentina. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica; Argentina. Fil: Pastore, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata; Argentina. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica; Argentina. Fil: Katunar, Maria Rosa. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata; Argentina. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina. Fil: Cere, Silvia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata; Argentina. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina. 2022-12-06T18:19:14Z 2022-12-06T18:19:14Z 2022-10 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/13546 https://www.sciencedirect.com/science/article/pii/S0013468622016206 0013-4686 https://doi.org/10.1016/j.electacta.2022.141463 eng info:eu-repo/semantics/restrictedAccess application/pdf Elsevier Electrochimica Acta 437 : 141463 (January 2023) |
| spellingShingle | Fracturas Corrosión Aleaciones Metales Biodegradabilidad Fractures Corrosion In Vitro Alloys Metals Biodegradability Moreno, Julieta Merlo, Julieta Leticia Renno, Ana Claudia Canizo, Jésica Romina Buchelly, Francisco Javier Pastore, Juan Ignacio Katunar, Maria Rosa Cere, Silvia In vitro characterization of anodized magnesium alloy as a potential biodegradable material for biomedical applications |
| title | In vitro characterization of anodized magnesium alloy as a potential biodegradable material for biomedical applications |
| title_full | In vitro characterization of anodized magnesium alloy as a potential biodegradable material for biomedical applications |
| title_fullStr | In vitro characterization of anodized magnesium alloy as a potential biodegradable material for biomedical applications |
| title_full_unstemmed | In vitro characterization of anodized magnesium alloy as a potential biodegradable material for biomedical applications |
| title_short | In vitro characterization of anodized magnesium alloy as a potential biodegradable material for biomedical applications |
| title_sort | in vitro characterization of anodized magnesium alloy as a potential biodegradable material for biomedical applications |
| topic | Fracturas Corrosión Aleaciones Metales Biodegradabilidad Fractures Corrosion In Vitro Alloys Metals Biodegradability |
| url | http://hdl.handle.net/20.500.12123/13546 https://www.sciencedirect.com/science/article/pii/S0013468622016206 https://doi.org/10.1016/j.electacta.2022.141463 |
| work_keys_str_mv | AT morenojulieta invitrocharacterizationofanodizedmagnesiumalloyasapotentialbiodegradablematerialforbiomedicalapplications AT merlojulietaleticia invitrocharacterizationofanodizedmagnesiumalloyasapotentialbiodegradablematerialforbiomedicalapplications AT rennoanaclaudia invitrocharacterizationofanodizedmagnesiumalloyasapotentialbiodegradablematerialforbiomedicalapplications AT canizojesicaromina invitrocharacterizationofanodizedmagnesiumalloyasapotentialbiodegradablematerialforbiomedicalapplications AT buchellyfranciscojavier invitrocharacterizationofanodizedmagnesiumalloyasapotentialbiodegradablematerialforbiomedicalapplications AT pastorejuanignacio invitrocharacterizationofanodizedmagnesiumalloyasapotentialbiodegradablematerialforbiomedicalapplications AT katunarmariarosa invitrocharacterizationofanodizedmagnesiumalloyasapotentialbiodegradablematerialforbiomedicalapplications AT ceresilvia invitrocharacterizationofanodizedmagnesiumalloyasapotentialbiodegradablematerialforbiomedicalapplications |