In vitro characterization of anodized magnesium alloy as a potential biodegradable material for biomedical applications

Pure metals and their alloys are used to partially or completely restore bone fractures. Biodegradable metals emerged as promising candidates for fracture fixation devices since they are able to self-degrade in the body environment. The main challenge of the devices is to reach an adequate degradati...

Full description

Bibliographic Details
Main Authors: Moreno, Julieta, Merlo, Julieta Leticia, Renno, Ana Claudia, Canizo, Jésica Romina, Buchelly, Francisco Javier, Pastore, Juan Ignacio, Katunar, Maria Rosa, Cere, Silvia
Format: Artículo
Language:Inglés
Published: Elsevier 2022
Subjects:
Online Access:http://hdl.handle.net/20.500.12123/13546
https://www.sciencedirect.com/science/article/pii/S0013468622016206
https://doi.org/10.1016/j.electacta.2022.141463
_version_ 1855485191494041600
author Moreno, Julieta
Merlo, Julieta Leticia
Renno, Ana Claudia
Canizo, Jésica Romina
Buchelly, Francisco Javier
Pastore, Juan Ignacio
Katunar, Maria Rosa
Cere, Silvia
author_browse Buchelly, Francisco Javier
Canizo, Jésica Romina
Cere, Silvia
Katunar, Maria Rosa
Merlo, Julieta Leticia
Moreno, Julieta
Pastore, Juan Ignacio
Renno, Ana Claudia
author_facet Moreno, Julieta
Merlo, Julieta Leticia
Renno, Ana Claudia
Canizo, Jésica Romina
Buchelly, Francisco Javier
Pastore, Juan Ignacio
Katunar, Maria Rosa
Cere, Silvia
author_sort Moreno, Julieta
collection INTA Digital
description Pure metals and their alloys are used to partially or completely restore bone fractures. Biodegradable metals emerged as promising candidates for fracture fixation devices since they are able to self-degrade in the body environment. The main challenge of the devices is to reach an adequate degradation rate relative to the bone healing and also to present safe degradation by-products. Magnesium alloys are very much studied because of their promising properties, but the main limitation for their application in biomedical devices is the hydrogen evolution that results from their corrosion in aqueous media. This work assesses the effects of low potential anodizing process of AZ91 alloys in basic media on surface topography, electrochemical response, hydrogen evolution and cell attachment compared with the non-treated alloys. A comparative approach to determine the electrochemical parameters for assessing the degradation rate is also discussed. Results show that the electrochemical treatment of anodizing at low voltage in 5 mol/L KOH solution generates magnesium oxide/hydroxide on the surface which could act as a barrier to prevent fast degradation, and consequently to reduce hydrogen release. In turn, this treatment improved the adhesion of bovine embryonic fibroblasts (BEFs) and MCT3T3 pre-osteoblastic cells to the surface, showing that it could be a good candidate to be used in temporary implants.
format Artículo
id INTA13546
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2022
publishDateRange 2022
publishDateSort 2022
publisher Elsevier
publisherStr Elsevier
record_format dspace
spelling INTA135462022-12-06T18:22:46Z In vitro characterization of anodized magnesium alloy as a potential biodegradable material for biomedical applications Moreno, Julieta Merlo, Julieta Leticia Renno, Ana Claudia Canizo, Jésica Romina Buchelly, Francisco Javier Pastore, Juan Ignacio Katunar, Maria Rosa Cere, Silvia Fracturas Corrosión Aleaciones Metales Biodegradabilidad Fractures Corrosion In Vitro Alloys Metals Biodegradability Pure metals and their alloys are used to partially or completely restore bone fractures. Biodegradable metals emerged as promising candidates for fracture fixation devices since they are able to self-degrade in the body environment. The main challenge of the devices is to reach an adequate degradation rate relative to the bone healing and also to present safe degradation by-products. Magnesium alloys are very much studied because of their promising properties, but the main limitation for their application in biomedical devices is the hydrogen evolution that results from their corrosion in aqueous media. This work assesses the effects of low potential anodizing process of AZ91 alloys in basic media on surface topography, electrochemical response, hydrogen evolution and cell attachment compared with the non-treated alloys. A comparative approach to determine the electrochemical parameters for assessing the degradation rate is also discussed. Results show that the electrochemical treatment of anodizing at low voltage in 5 mol/L KOH solution generates magnesium oxide/hydroxide on the surface which could act as a barrier to prevent fast degradation, and consequently to reduce hydrogen release. In turn, this treatment improved the adhesion of bovine embryonic fibroblasts (BEFs) and MCT3T3 pre-osteoblastic cells to the surface, showing that it could be a good candidate to be used in temporary implants. EEA Balcarce Fil: Moreno, Julieta. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata; Argentina. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina. Fil: Merlo, Julieta Leticia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata; Argentina. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina. Fil: Renno, Ana Claudia. Federal University of São Paulo Department of Biosciences; Brasil. Fil: Canizo, Jésica Romina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Fil: Buchelly, Francisco Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata; Argentina. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica; Argentina. Fil: Pastore, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata; Argentina. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica; Argentina. Fil: Katunar, Maria Rosa. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata; Argentina. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina. Fil: Cere, Silvia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata; Argentina. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina. 2022-12-06T18:19:14Z 2022-12-06T18:19:14Z 2022-10 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/13546 https://www.sciencedirect.com/science/article/pii/S0013468622016206 0013-4686 https://doi.org/10.1016/j.electacta.2022.141463 eng info:eu-repo/semantics/restrictedAccess application/pdf Elsevier Electrochimica Acta 437 : 141463 (January 2023)
spellingShingle Fracturas
Corrosión
Aleaciones
Metales
Biodegradabilidad
Fractures
Corrosion
In Vitro
Alloys
Metals
Biodegradability
Moreno, Julieta
Merlo, Julieta Leticia
Renno, Ana Claudia
Canizo, Jésica Romina
Buchelly, Francisco Javier
Pastore, Juan Ignacio
Katunar, Maria Rosa
Cere, Silvia
In vitro characterization of anodized magnesium alloy as a potential biodegradable material for biomedical applications
title In vitro characterization of anodized magnesium alloy as a potential biodegradable material for biomedical applications
title_full In vitro characterization of anodized magnesium alloy as a potential biodegradable material for biomedical applications
title_fullStr In vitro characterization of anodized magnesium alloy as a potential biodegradable material for biomedical applications
title_full_unstemmed In vitro characterization of anodized magnesium alloy as a potential biodegradable material for biomedical applications
title_short In vitro characterization of anodized magnesium alloy as a potential biodegradable material for biomedical applications
title_sort in vitro characterization of anodized magnesium alloy as a potential biodegradable material for biomedical applications
topic Fracturas
Corrosión
Aleaciones
Metales
Biodegradabilidad
Fractures
Corrosion
In Vitro
Alloys
Metals
Biodegradability
url http://hdl.handle.net/20.500.12123/13546
https://www.sciencedirect.com/science/article/pii/S0013468622016206
https://doi.org/10.1016/j.electacta.2022.141463
work_keys_str_mv AT morenojulieta invitrocharacterizationofanodizedmagnesiumalloyasapotentialbiodegradablematerialforbiomedicalapplications
AT merlojulietaleticia invitrocharacterizationofanodizedmagnesiumalloyasapotentialbiodegradablematerialforbiomedicalapplications
AT rennoanaclaudia invitrocharacterizationofanodizedmagnesiumalloyasapotentialbiodegradablematerialforbiomedicalapplications
AT canizojesicaromina invitrocharacterizationofanodizedmagnesiumalloyasapotentialbiodegradablematerialforbiomedicalapplications
AT buchellyfranciscojavier invitrocharacterizationofanodizedmagnesiumalloyasapotentialbiodegradablematerialforbiomedicalapplications
AT pastorejuanignacio invitrocharacterizationofanodizedmagnesiumalloyasapotentialbiodegradablematerialforbiomedicalapplications
AT katunarmariarosa invitrocharacterizationofanodizedmagnesiumalloyasapotentialbiodegradablematerialforbiomedicalapplications
AT ceresilvia invitrocharacterizationofanodizedmagnesiumalloyasapotentialbiodegradablematerialforbiomedicalapplications