Methodology for the identification of relevant loci for milk traits in dairy cattle, using machine learning algorithms
Machine learning methods were considered efficient in identifying single nucleotide polymorphisms (SNP) underlying a trait of interest. This study aimed to construct predictive models using machine learning algorithms, to identify loci that best explain the variance in milk traits of dairy cattle. F...
| Autores principales: | , , , , |
|---|---|
| Formato: | info:ar-repo/semantics/artículo |
| Lenguaje: | Inglés |
| Publicado: |
Elsevier
2022
|
| Materias: | |
| Acceso en línea: | http://hdl.handle.net/20.500.12123/11954 https://www.sciencedirect.com/science/article/pii/S2215016122001145 https://doi.org/10.1016/j.mex.2022.101733 |
Ejemplares similares: Methodology for the identification of relevant loci for milk traits in dairy cattle, using machine learning algorithms
- Machine learning algorithms identified relevant SNPs for milk fat content in cattle
- Relevant loci for milk production in dairy cattle, obtained by machine learning algorithms
- Imputación de genotipos faltantes mediante algoritmos de machine learning = Imputation of missing genotypes using machine learning algorithms
- Composición de leche caprina de área serrana y llana
- Weighted single-step genome-wide association analyses for milk traits in Holstein and Holstein x Jersey crossbred dairy cattle
- Digital soil mapping of metals and metalloids in croplands using multiple geospatial data and machine learning, implemented in GEE, for the Peruvian Mantaro Valley