UAV Flight Orientation and Height Influence on Tree Crown Segmentation in Agroforestry Systems

Precise crown segmentation is essential for assessing structure, competition, and productivity in agroforestry systems, but delineation is challenging due to canopy heterogeneity and variability in aerial imagery. This study analyzes how flight height and orientation affect segmentation accuracy in...

Descripción completa

Detalles Bibliográficos
Autores principales: Baselly Villanueva, Juan Rodrigo, Fernández Sandoval, Andrés, Pinedo Freyre, Sergio Fernando, Salazar Hinostroza, Evelin Judith, Cárdenas Rengifo, Gloria Patricia, Puerta, Ronald, Huanca Diaz, José Ricardo, Tuesta Cometivos, Gino Anthony, Vallejos Torres, Geomar, Goycochea Casas, Gianmarco, Álvarez Álvarez, Pedro, Ismail, Zool Hilmi
Formato: Artículo
Lenguaje:Inglés
Publicado: Forests 2026
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12955/2994
https://doi.org/10.3390/f17010087
_version_ 1855490128115400704
author Baselly Villanueva, Juan Rodrigo
Fernández Sandoval, Andrés
Pinedo Freyre, Sergio Fernando
Salazar Hinostroza, Evelin Judith
Cárdenas Rengifo, Gloria Patricia
Puerta, Ronald
Huanca Diaz, José Ricardo
Tuesta Cometivos, Gino Anthony
Vallejos Torres, Geomar
Goycochea Casas, Gianmarco
Álvarez Álvarez, Pedro
Ismail, Zool Hilmi
author_browse Baselly Villanueva, Juan Rodrigo
Cárdenas Rengifo, Gloria Patricia
Fernández Sandoval, Andrés
Goycochea Casas, Gianmarco
Huanca Diaz, José Ricardo
Ismail, Zool Hilmi
Pinedo Freyre, Sergio Fernando
Puerta, Ronald
Salazar Hinostroza, Evelin Judith
Tuesta Cometivos, Gino Anthony
Vallejos Torres, Geomar
Álvarez Álvarez, Pedro
author_facet Baselly Villanueva, Juan Rodrigo
Fernández Sandoval, Andrés
Pinedo Freyre, Sergio Fernando
Salazar Hinostroza, Evelin Judith
Cárdenas Rengifo, Gloria Patricia
Puerta, Ronald
Huanca Diaz, José Ricardo
Tuesta Cometivos, Gino Anthony
Vallejos Torres, Geomar
Goycochea Casas, Gianmarco
Álvarez Álvarez, Pedro
Ismail, Zool Hilmi
author_sort Baselly Villanueva, Juan Rodrigo
collection Repositorio INIA
description Precise crown segmentation is essential for assessing structure, competition, and productivity in agroforestry systems, but delineation is challenging due to canopy heterogeneity and variability in aerial imagery. This study analyzes how flight height and orientation affect segmentation accuracy in an agroforestry system of the Peruvian Amazon, using RGB images acquired with a DJI Mavic Mini 3 Pro UAV and the instance-segmentation models YOLOv8 and YOLOv11. Four flight heights (40, 50, 60, and 70 m) and two orientations (parallel and transversal) were analyzed in an agroforestry system composed of Cedrelinga cateniformis (Ducke) Ducke, Calycophyllum spruceanum (Benth.) Hook.f. ex K.Schum., and Virola pavonis (A.DC.) A.C. Sm. Results showed that a flight height of 60 m provided the highest delineation accuracy (F1 ≈ 0.88 for YOLOv8 and 0.84 for YOLOv11), indicating an optimal balance between resolution and canopy coverage. Although YOLOv8 achieved the highest precision under optimal conditions, it exhibited greater variability with changes in flight geometry. In contrast, YOLOv11 showed a more stable and robust performance, with generalization gaps below 0.02, reflecting a stronger adaptability to different acquisition conditions. At the species level, vertical position and crown morphological differences (Such as symmetry, branching angle, and bifurcation level) directly influenced detection accuracy. Cedrelinga cateniformis displayed dominant and asymmetric crowns; Calycophyllum spruceanum had narrow, co-dominant crowns; and Virola pavonis exhibited symmetrical and intermediate crowns. These traits were associated with the detection and confusion patterns observed across the models, highlighting the importance of crown architecture in automated segmentation and the potential of UAVs combined with YOLO algorithms for the efficient monitoring of tropical agroforestry systems.
format Artículo
id INIA2994
institution Institucional Nacional de Innovación Agraria
language Inglés
publishDate 2026
publishDateRange 2026
publishDateSort 2026
publisher Forests
publisherStr Forests
record_format dspace
spelling INIA29942026-01-16T15:51:15Z UAV Flight Orientation and Height Influence on Tree Crown Segmentation in Agroforestry Systems Baselly Villanueva, Juan Rodrigo Fernández Sandoval, Andrés Pinedo Freyre, Sergio Fernando Salazar Hinostroza, Evelin Judith Cárdenas Rengifo, Gloria Patricia Puerta, Ronald Huanca Diaz, José Ricardo Tuesta Cometivos, Gino Anthony Vallejos Torres, Geomar Goycochea Casas, Gianmarco Álvarez Álvarez, Pedro Ismail, Zool Hilmi Calycophyllum spruceanum Cedrelinga cateniformis Virola pavonis crown forest monitoring Remote sensing YOLO Corona Monitoreo forestal Teledetección https://purl.org/pe-repo/ocde/ford#4.01.06 Sistema agroforestal; Agroforestry systems; Teledetección; Remote sensing; Vehículo aéreo no tripulado; Unmanned aerial vehicles; Árbol forestal; Forest tres; Detección; Detection Precise crown segmentation is essential for assessing structure, competition, and productivity in agroforestry systems, but delineation is challenging due to canopy heterogeneity and variability in aerial imagery. This study analyzes how flight height and orientation affect segmentation accuracy in an agroforestry system of the Peruvian Amazon, using RGB images acquired with a DJI Mavic Mini 3 Pro UAV and the instance-segmentation models YOLOv8 and YOLOv11. Four flight heights (40, 50, 60, and 70 m) and two orientations (parallel and transversal) were analyzed in an agroforestry system composed of Cedrelinga cateniformis (Ducke) Ducke, Calycophyllum spruceanum (Benth.) Hook.f. ex K.Schum., and Virola pavonis (A.DC.) A.C. Sm. Results showed that a flight height of 60 m provided the highest delineation accuracy (F1 ≈ 0.88 for YOLOv8 and 0.84 for YOLOv11), indicating an optimal balance between resolution and canopy coverage. Although YOLOv8 achieved the highest precision under optimal conditions, it exhibited greater variability with changes in flight geometry. In contrast, YOLOv11 showed a more stable and robust performance, with generalization gaps below 0.02, reflecting a stronger adaptability to different acquisition conditions. At the species level, vertical position and crown morphological differences (Such as symmetry, branching angle, and bifurcation level) directly influenced detection accuracy. Cedrelinga cateniformis displayed dominant and asymmetric crowns; Calycophyllum spruceanum had narrow, co-dominant crowns; and Virola pavonis exhibited symmetrical and intermediate crowns. These traits were associated with the detection and confusion patterns observed across the models, highlighting the importance of crown architecture in automated segmentation and the potential of UAVs combined with YOLO algorithms for the efficient monitoring of tropical agroforestry systems. This research was financed by the National Forestry Program of the National Institute for Agrarian Innovation and the “Programa Presupuestal 121—Mejora de la articulación de los pequeños productores a los mercados”. 2026-01-15T22:20:47Z 2026-01-15T22:20:47Z 2026-01-09 info:eu-repo/semantics/article Baselly-Villanueva, J. R., Fernández-Sandoval, A., Pinedo Freyre, S. F., Salazar-Hinostroza, E. J., Cárdenas-Rengifo, G. P., Puerta, R., Huanca Diaz, J. R., Tuesta Cometivos, G. A., Vallejos-Torres, G., Goycochea Casas, G., Álvarez-Álvarez, P., & Ismail, Z. H. (2026). UAV flight orientation and height influence on tree crown segmentation in agroforestry systems. Forests, 17(1), 87. https://doi.org/10.3390/f17010087 1999-4907 http://hdl.handle.net/20.500.12955/2994 https://doi.org/10.3390/f17010087 eng urn:issn: 1999-4907 MDPI info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/4.0/ application/pdf application/pdf Forests CH Instituto Nacional de Innovación Agraria Repositorio Institucional - INIA
spellingShingle Calycophyllum spruceanum
Cedrelinga cateniformis
Virola pavonis
crown
forest monitoring
Remote sensing
YOLO
Corona
Monitoreo forestal
Teledetección
https://purl.org/pe-repo/ocde/ford#4.01.06
Sistema agroforestal; Agroforestry systems; Teledetección; Remote sensing; Vehículo aéreo no tripulado; Unmanned aerial vehicles; Árbol forestal; Forest tres; Detección; Detection
Baselly Villanueva, Juan Rodrigo
Fernández Sandoval, Andrés
Pinedo Freyre, Sergio Fernando
Salazar Hinostroza, Evelin Judith
Cárdenas Rengifo, Gloria Patricia
Puerta, Ronald
Huanca Diaz, José Ricardo
Tuesta Cometivos, Gino Anthony
Vallejos Torres, Geomar
Goycochea Casas, Gianmarco
Álvarez Álvarez, Pedro
Ismail, Zool Hilmi
UAV Flight Orientation and Height Influence on Tree Crown Segmentation in Agroforestry Systems
title UAV Flight Orientation and Height Influence on Tree Crown Segmentation in Agroforestry Systems
title_full UAV Flight Orientation and Height Influence on Tree Crown Segmentation in Agroforestry Systems
title_fullStr UAV Flight Orientation and Height Influence on Tree Crown Segmentation in Agroforestry Systems
title_full_unstemmed UAV Flight Orientation and Height Influence on Tree Crown Segmentation in Agroforestry Systems
title_short UAV Flight Orientation and Height Influence on Tree Crown Segmentation in Agroforestry Systems
title_sort uav flight orientation and height influence on tree crown segmentation in agroforestry systems
topic Calycophyllum spruceanum
Cedrelinga cateniformis
Virola pavonis
crown
forest monitoring
Remote sensing
YOLO
Corona
Monitoreo forestal
Teledetección
https://purl.org/pe-repo/ocde/ford#4.01.06
Sistema agroforestal; Agroforestry systems; Teledetección; Remote sensing; Vehículo aéreo no tripulado; Unmanned aerial vehicles; Árbol forestal; Forest tres; Detección; Detection
url http://hdl.handle.net/20.500.12955/2994
https://doi.org/10.3390/f17010087
work_keys_str_mv AT basellyvillanuevajuanrodrigo uavflightorientationandheightinfluenceontreecrownsegmentationinagroforestrysystems
AT fernandezsandovalandres uavflightorientationandheightinfluenceontreecrownsegmentationinagroforestrysystems
AT pinedofreyresergiofernando uavflightorientationandheightinfluenceontreecrownsegmentationinagroforestrysystems
AT salazarhinostrozaevelinjudith uavflightorientationandheightinfluenceontreecrownsegmentationinagroforestrysystems
AT cardenasrengifogloriapatricia uavflightorientationandheightinfluenceontreecrownsegmentationinagroforestrysystems
AT puertaronald uavflightorientationandheightinfluenceontreecrownsegmentationinagroforestrysystems
AT huancadiazjosericardo uavflightorientationandheightinfluenceontreecrownsegmentationinagroforestrysystems
AT tuestacometivosginoanthony uavflightorientationandheightinfluenceontreecrownsegmentationinagroforestrysystems
AT vallejostorresgeomar uavflightorientationandheightinfluenceontreecrownsegmentationinagroforestrysystems
AT goycocheacasasgianmarco uavflightorientationandheightinfluenceontreecrownsegmentationinagroforestrysystems
AT alvarezalvarezpedro uavflightorientationandheightinfluenceontreecrownsegmentationinagroforestrysystems
AT ismailzoolhilmi uavflightorientationandheightinfluenceontreecrownsegmentationinagroforestrysystems