LOCAL regression algorithm improves near infrared spectroscopy predictions when the target constituent evolves in breeding populations

The CGIAR Harvest Plus Challenge Program began in the mid-2000s to support the genetic improvement of nutritional quality in various crops, including the carotenoids content of cassava roots. Successful conventional breeding requires a large number of segregating progenies. However, only a few sampl...

Descripción completa

Detalles Bibliográficos
Autores principales: Davrieux, Fabrice, Dufour, D.L., Dardenne, Pierre, Belalcázar, John Eiver, Pizarro, Mónica, Luna Meléndez, Jorge Luis, Londoño Hernandez, Luis Fernando, Jaramillo Valencia, Angélica M., Sánchez, Teresa, Morante, Nelson, Calle, Fernando, Becerra López Lavelle, Luis Augusto, Ceballos, H.
Formato: Journal Article
Lenguaje:Inglés
Publicado: SAGE Publications 2016
Materias:
Acceso en línea:https://hdl.handle.net/10568/73377
_version_ 1855523927276650496
author Davrieux, Fabrice
Dufour, D.L.
Dardenne, Pierre
Belalcázar, John Eiver
Pizarro, Mónica
Luna Meléndez, Jorge Luis
Londoño Hernandez, Luis Fernando
Jaramillo Valencia, Angélica M.
Sánchez, Teresa
Morante, Nelson
Calle, Fernando
Becerra López Lavelle, Luis Augusto
Ceballos, H.
author_browse Becerra López Lavelle, Luis Augusto
Belalcázar, John Eiver
Calle, Fernando
Ceballos, H.
Dardenne, Pierre
Davrieux, Fabrice
Dufour, D.L.
Jaramillo Valencia, Angélica M.
Londoño Hernandez, Luis Fernando
Luna Meléndez, Jorge Luis
Morante, Nelson
Pizarro, Mónica
Sánchez, Teresa
author_facet Davrieux, Fabrice
Dufour, D.L.
Dardenne, Pierre
Belalcázar, John Eiver
Pizarro, Mónica
Luna Meléndez, Jorge Luis
Londoño Hernandez, Luis Fernando
Jaramillo Valencia, Angélica M.
Sánchez, Teresa
Morante, Nelson
Calle, Fernando
Becerra López Lavelle, Luis Augusto
Ceballos, H.
author_sort Davrieux, Fabrice
collection Repository of Agricultural Research Outputs (CGSpace)
description The CGIAR Harvest Plus Challenge Program began in the mid-2000s to support the genetic improvement of nutritional quality in various crops, including the carotenoids content of cassava roots. Successful conventional breeding requires a large number of segregating progenies. However, only a few samples can be quantified by high performance liquid chromatography each day for total carotenoids (TCC) and β-carotene (TBC) contents, limiting the gains from breeding. This study describes the usefulness of near infrared (NIR) spectroscopy and the efficiency of a large database coupled to a LOCAL regression algorithm to reach accurate TCC/TBC predictions on fresh cassava roots. The cassava database (6026 samples) was built over six years. TCC values ranged from 0.11 μg g−1 to 29.0 μg g−1, whereas TBC ranged from negligible values up to 20.1 μg g−1. All values were measured and expressed on a fresh weight basis. Between 2009 and 2014 increases in TCC and TBC were 86% and 122%, respectively. A comparison of calibrations using partial least squares (PLS) regression and LOCAL regression was done. The standard error of prediction were 1.82 μg g−1 for TCC and 1.28 μg g−1 for TBC using PLS model and 1.38 μg g−1 and 1.02 μg g−1, respectively, using LOCAL regression. The specificity of the data, with increasing content of the constituent of interest year after year, clearly showed the limitation of the classical partial least squares regression approach. The LOCAL regression algorithm takes advantage of large databases; this study highlighted the efficiency of this concept. NIR spectroscopy coupled to LOCAL regression led to efficient models for breeding programmes aiming at increasing carotenoids content in fresh cassava roots. NIR spectroscopy can also be used to predict other important constituents such as dry matter content and cyanogenic glucosides.
format Journal Article
id CGSpace73377
institution CGIAR Consortium
language Inglés
publishDate 2016
publishDateRange 2016
publishDateSort 2016
publisher SAGE Publications
publisherStr SAGE Publications
record_format dspace
spelling CGSpace733772025-12-08T09:54:28Z LOCAL regression algorithm improves near infrared spectroscopy predictions when the target constituent evolves in breeding populations Davrieux, Fabrice Dufour, D.L. Dardenne, Pierre Belalcázar, John Eiver Pizarro, Mónica Luna Meléndez, Jorge Luis Londoño Hernandez, Luis Fernando Jaramillo Valencia, Angélica M. Sánchez, Teresa Morante, Nelson Calle, Fernando Becerra López Lavelle, Luis Augusto Ceballos, H. manihot esculenta regression analysis carotenoids plant breeding infrared spectroscopy análisis de la regresión carotenoides fitomejoramiento espectroscopia infrarroja The CGIAR Harvest Plus Challenge Program began in the mid-2000s to support the genetic improvement of nutritional quality in various crops, including the carotenoids content of cassava roots. Successful conventional breeding requires a large number of segregating progenies. However, only a few samples can be quantified by high performance liquid chromatography each day for total carotenoids (TCC) and β-carotene (TBC) contents, limiting the gains from breeding. This study describes the usefulness of near infrared (NIR) spectroscopy and the efficiency of a large database coupled to a LOCAL regression algorithm to reach accurate TCC/TBC predictions on fresh cassava roots. The cassava database (6026 samples) was built over six years. TCC values ranged from 0.11 μg g−1 to 29.0 μg g−1, whereas TBC ranged from negligible values up to 20.1 μg g−1. All values were measured and expressed on a fresh weight basis. Between 2009 and 2014 increases in TCC and TBC were 86% and 122%, respectively. A comparison of calibrations using partial least squares (PLS) regression and LOCAL regression was done. The standard error of prediction were 1.82 μg g−1 for TCC and 1.28 μg g−1 for TBC using PLS model and 1.38 μg g−1 and 1.02 μg g−1, respectively, using LOCAL regression. The specificity of the data, with increasing content of the constituent of interest year after year, clearly showed the limitation of the classical partial least squares regression approach. The LOCAL regression algorithm takes advantage of large databases; this study highlighted the efficiency of this concept. NIR spectroscopy coupled to LOCAL regression led to efficient models for breeding programmes aiming at increasing carotenoids content in fresh cassava roots. NIR spectroscopy can also be used to predict other important constituents such as dry matter content and cyanogenic glucosides. 2016-04 2016-05-11T20:48:17Z 2016-05-11T20:48:17Z Journal Article https://hdl.handle.net/10568/73377 en Limited Access SAGE Publications Davrieux, F.; Dufour, Dominique; Dardenne, Pierre; Belalcazar, John; Pizarro, Monica; Luna Meléndez, Jorge Luis; Londoño, Luis; Jaramillo, Angelica; Sanchez, Teresa; Morante, Nelson; Calle, Fernando; Becerra Lopez-Lavalle, Luis Augusto; Ceballos, Hernan. 2016. LOCAL regression algorithm improves near infrared spectroscopy predictions when the target constituent evolves in breeding populations. Journal Of Near Infrared Spectroscopy 24 (2): 109-117.
spellingShingle manihot esculenta
regression analysis
carotenoids
plant breeding
infrared spectroscopy
análisis de la regresión
carotenoides
fitomejoramiento
espectroscopia infrarroja
Davrieux, Fabrice
Dufour, D.L.
Dardenne, Pierre
Belalcázar, John Eiver
Pizarro, Mónica
Luna Meléndez, Jorge Luis
Londoño Hernandez, Luis Fernando
Jaramillo Valencia, Angélica M.
Sánchez, Teresa
Morante, Nelson
Calle, Fernando
Becerra López Lavelle, Luis Augusto
Ceballos, H.
LOCAL regression algorithm improves near infrared spectroscopy predictions when the target constituent evolves in breeding populations
title LOCAL regression algorithm improves near infrared spectroscopy predictions when the target constituent evolves in breeding populations
title_full LOCAL regression algorithm improves near infrared spectroscopy predictions when the target constituent evolves in breeding populations
title_fullStr LOCAL regression algorithm improves near infrared spectroscopy predictions when the target constituent evolves in breeding populations
title_full_unstemmed LOCAL regression algorithm improves near infrared spectroscopy predictions when the target constituent evolves in breeding populations
title_short LOCAL regression algorithm improves near infrared spectroscopy predictions when the target constituent evolves in breeding populations
title_sort local regression algorithm improves near infrared spectroscopy predictions when the target constituent evolves in breeding populations
topic manihot esculenta
regression analysis
carotenoids
plant breeding
infrared spectroscopy
análisis de la regresión
carotenoides
fitomejoramiento
espectroscopia infrarroja
url https://hdl.handle.net/10568/73377
work_keys_str_mv AT davrieuxfabrice localregressionalgorithmimprovesnearinfraredspectroscopypredictionswhenthetargetconstituentevolvesinbreedingpopulations
AT dufourdl localregressionalgorithmimprovesnearinfraredspectroscopypredictionswhenthetargetconstituentevolvesinbreedingpopulations
AT dardennepierre localregressionalgorithmimprovesnearinfraredspectroscopypredictionswhenthetargetconstituentevolvesinbreedingpopulations
AT belalcazarjohneiver localregressionalgorithmimprovesnearinfraredspectroscopypredictionswhenthetargetconstituentevolvesinbreedingpopulations
AT pizarromonica localregressionalgorithmimprovesnearinfraredspectroscopypredictionswhenthetargetconstituentevolvesinbreedingpopulations
AT lunamelendezjorgeluis localregressionalgorithmimprovesnearinfraredspectroscopypredictionswhenthetargetconstituentevolvesinbreedingpopulations
AT londonohernandezluisfernando localregressionalgorithmimprovesnearinfraredspectroscopypredictionswhenthetargetconstituentevolvesinbreedingpopulations
AT jaramillovalenciaangelicam localregressionalgorithmimprovesnearinfraredspectroscopypredictionswhenthetargetconstituentevolvesinbreedingpopulations
AT sanchezteresa localregressionalgorithmimprovesnearinfraredspectroscopypredictionswhenthetargetconstituentevolvesinbreedingpopulations
AT morantenelson localregressionalgorithmimprovesnearinfraredspectroscopypredictionswhenthetargetconstituentevolvesinbreedingpopulations
AT callefernando localregressionalgorithmimprovesnearinfraredspectroscopypredictionswhenthetargetconstituentevolvesinbreedingpopulations
AT becerralopezlavelleluisaugusto localregressionalgorithmimprovesnearinfraredspectroscopypredictionswhenthetargetconstituentevolvesinbreedingpopulations
AT ceballosh localregressionalgorithmimprovesnearinfraredspectroscopypredictionswhenthetargetconstituentevolvesinbreedingpopulations