Genome sequence and analysis of the tuber crop potato

Potato (Solanum tuberosum L.) is the world’s most important non-grain food crop and is central to global food security. It is clonally propagated, highly heterozygous, autotetraploid, and suffers acute inbreeding depression. Here we use a homozygous doubled-monoploid potato clone to sequence and ass...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, X., Pan, P., Cheng, S., Zhang, B., Mu, D., Ni, P., Zhang, G., Yang, S., Li, R., Wang, S., Orjeda, G., Guzmán, F., Torres, M., Lozano, R., Ponce, O., Martínez, D., Cruz, G. de la, Chakrabarti, S.K., Patil, V.U., Skryabin, K.G., Kuznetsov, B.B., Ravin, N.V., Kolganova, T.V., Beletsky, A.V., Mardanov, A.V., Genova, A.D., Bolser, D.M., Martin, D.M.A., Li, G., Yang, Y., Kuang, H., Hu, Q., Xiong, X., Bishop, G.J., Sagredo, B., Mejia, N., Zagorski, W., Gromadka, R., Gawor, J., Szczesny, P., Huang, S., Zhang, Z., Liang, C., He, J., Li, Y., He, Y., Xu, J., Zhang Yanyan, Xie, B., Du, Y., Qu, D., Bonierbale, Merideth W., Ghislain, M., Herrera, M.R., Giuliano, G., Pietrella, M., Perrotta, G., Facella, P., O'Brien, K., Feingold, S.E., Barreiro, L.E., Massa, G.A., Diambra, L., Whitty, B.R., Vaillancourt, B., Lin, H., Massa, A.N., Geoffroy, M., Lundback, S., DellaPenna, D., Buell, R., Sharma, S.K., Marshall, D.F., Waugh, R., Bryan, Glenn J., Destefanis, M., Nagy, I., Milbourne, D., Thomson, S.J., Fiers, M., Jacobs, J.M.E., Nielsen, K.L., Sonderkaer, M., Iovene, M., Torres, G.A., Jiang, J., Veilleux, R.E., Bachem, C.W.B., Boer, J. de., Borm, T., Kloosterman, B., Eck, H. van., Datema, E., Lintel Hekkert, B. te., Goverse, A., Ham, R.C.H.J. van., Visser, Richard G.F.
Formato: Journal Article
Lenguaje:Inglés
Publicado: Springer 2011
Materias:
Acceso en línea:https://hdl.handle.net/10568/67692
_version_ 1855527759212707840
author Xu, X.
Pan, P.
Cheng, S.
Zhang, B.
Mu, D.
Ni, P.
Zhang, G.
Yang, S.
Li, R.
Wang, S.
Orjeda, G.
Guzmán, F.
Torres, M.
Lozano, R.
Ponce, O.
Martínez, D.
Cruz, G. de la
Chakrabarti, S.K.
Patil, V.U.
Skryabin, K.G.
Kuznetsov, B.B.
Ravin, N.V.
Kolganova, T.V.
Beletsky, A.V.
Mardanov, A.V.
Genova, A.D.
Bolser, D.M.
Martin, D.M.A.
Li, G.
Yang, Y.
Kuang, H.
Hu, Q.
Xiong, X.
Bishop, G.J.
Sagredo, B.
Mejia, N.
Zagorski, W.
Gromadka, R.
Gawor, J.
Szczesny, P.
Huang, S.
Zhang, Z.
Liang, C.
He, J.
Li, Y.
He, Y.
Xu, J.
Zhang Yanyan
Xie, B.
Du, Y.
Qu, D.
Bonierbale, Merideth W.
Ghislain, M.
Herrera, M.R.
Giuliano, G.
Pietrella, M.
Perrotta, G.
Facella, P.
O'Brien, K.
Feingold, S.E.
Barreiro, L.E.
Massa, G.A.
Diambra, L.
Whitty, B.R.
Vaillancourt, B.
Lin, H.
Massa, A.N.
Geoffroy, M.
Lundback, S.
DellaPenna, D.
Buell, R.
Sharma, S.K.
Marshall, D.F.
Waugh, R.
Bryan, Glenn J.
Destefanis, M.
Nagy, I.
Milbourne, D.
Thomson, S.J.
Fiers, M.
Jacobs, J.M.E.
Nielsen, K.L.
Sonderkaer, M.
Iovene, M.
Torres, G.A.
Jiang, J.
Veilleux, R.E.
Bachem, C.W.B.
Boer, J. de.
Borm, T.
Kloosterman, B.
Eck, H. van.
Datema, E.
Lintel Hekkert, B. te.
Goverse, A.
Ham, R.C.H.J. van.
Visser, Richard G.F.
author_browse Bachem, C.W.B.
Barreiro, L.E.
Beletsky, A.V.
Bishop, G.J.
Boer, J. de.
Bolser, D.M.
Bonierbale, Merideth W.
Borm, T.
Bryan, Glenn J.
Buell, R.
Chakrabarti, S.K.
Cheng, S.
Cruz, G. de la
Datema, E.
DellaPenna, D.
Destefanis, M.
Diambra, L.
Du, Y.
Eck, H. van.
Facella, P.
Feingold, S.E.
Fiers, M.
Gawor, J.
Genova, A.D.
Geoffroy, M.
Ghislain, M.
Giuliano, G.
Goverse, A.
Gromadka, R.
Guzmán, F.
Ham, R.C.H.J. van.
He, J.
He, Y.
Herrera, M.R.
Hu, Q.
Huang, S.
Iovene, M.
Jacobs, J.M.E.
Jiang, J.
Kloosterman, B.
Kolganova, T.V.
Kuang, H.
Kuznetsov, B.B.
Li, G.
Li, R.
Li, Y.
Liang, C.
Lin, H.
Lintel Hekkert, B. te.
Lozano, R.
Lundback, S.
Mardanov, A.V.
Marshall, D.F.
Martin, D.M.A.
Martínez, D.
Massa, A.N.
Massa, G.A.
Mejia, N.
Milbourne, D.
Mu, D.
Nagy, I.
Ni, P.
Nielsen, K.L.
O'Brien, K.
Orjeda, G.
Pan, P.
Patil, V.U.
Perrotta, G.
Pietrella, M.
Ponce, O.
Qu, D.
Ravin, N.V.
Sagredo, B.
Sharma, S.K.
Skryabin, K.G.
Sonderkaer, M.
Szczesny, P.
Thomson, S.J.
Torres, G.A.
Torres, M.
Vaillancourt, B.
Veilleux, R.E.
Visser, Richard G.F.
Wang, S.
Waugh, R.
Whitty, B.R.
Xie, B.
Xiong, X.
Xu, J.
Xu, X.
Yang, S.
Yang, Y.
Zagorski, W.
Zhang Yanyan
Zhang, B.
Zhang, G.
Zhang, Z.
author_facet Xu, X.
Pan, P.
Cheng, S.
Zhang, B.
Mu, D.
Ni, P.
Zhang, G.
Yang, S.
Li, R.
Wang, S.
Orjeda, G.
Guzmán, F.
Torres, M.
Lozano, R.
Ponce, O.
Martínez, D.
Cruz, G. de la
Chakrabarti, S.K.
Patil, V.U.
Skryabin, K.G.
Kuznetsov, B.B.
Ravin, N.V.
Kolganova, T.V.
Beletsky, A.V.
Mardanov, A.V.
Genova, A.D.
Bolser, D.M.
Martin, D.M.A.
Li, G.
Yang, Y.
Kuang, H.
Hu, Q.
Xiong, X.
Bishop, G.J.
Sagredo, B.
Mejia, N.
Zagorski, W.
Gromadka, R.
Gawor, J.
Szczesny, P.
Huang, S.
Zhang, Z.
Liang, C.
He, J.
Li, Y.
He, Y.
Xu, J.
Zhang Yanyan
Xie, B.
Du, Y.
Qu, D.
Bonierbale, Merideth W.
Ghislain, M.
Herrera, M.R.
Giuliano, G.
Pietrella, M.
Perrotta, G.
Facella, P.
O'Brien, K.
Feingold, S.E.
Barreiro, L.E.
Massa, G.A.
Diambra, L.
Whitty, B.R.
Vaillancourt, B.
Lin, H.
Massa, A.N.
Geoffroy, M.
Lundback, S.
DellaPenna, D.
Buell, R.
Sharma, S.K.
Marshall, D.F.
Waugh, R.
Bryan, Glenn J.
Destefanis, M.
Nagy, I.
Milbourne, D.
Thomson, S.J.
Fiers, M.
Jacobs, J.M.E.
Nielsen, K.L.
Sonderkaer, M.
Iovene, M.
Torres, G.A.
Jiang, J.
Veilleux, R.E.
Bachem, C.W.B.
Boer, J. de.
Borm, T.
Kloosterman, B.
Eck, H. van.
Datema, E.
Lintel Hekkert, B. te.
Goverse, A.
Ham, R.C.H.J. van.
Visser, Richard G.F.
author_sort Xu, X.
collection Repository of Agricultural Research Outputs (CGSpace)
description Potato (Solanum tuberosum L.) is the world’s most important non-grain food crop and is central to global food security. It is clonally propagated, highly heterozygous, autotetraploid, and suffers acute inbreeding depression. Here we use a homozygous doubled-monoploid potato clone to sequence and assemble 86% of the 844-megabase genome. We predict 39,031 protein-coding genes and present evidence for at least two genome duplication events indicative of a palaeopolyploid origin. As the first genome sequence of an asterid, the potato genome reveals 2,642 genes specific to this large angiosperm clade. We also sequenced a heterozygous diploid clone and show that gene presence/absence variants and other potentially deleterious mutations occur frequently and are a likely cause of inbreeding depression. Gene family expansion, tissue-specific expression and recruitment of genes to new pathways contributed to the evolution of tuber development. The potato genome sequence provides a platform for genetic improvement of this vital crop. The genome of the potato (Solanum tuberosum L.), a staple crop vital to food security, has been sequenced. The Potato Genome Sequencing Consortium sequenced a homozygous doubled-monoploid potato clone as well as a heterozygous diploid clone. Genome analysis reveals traces of at least two genome duplication events and genes specific to Asterids, a large clade of flowering plants of which the potato is the first to be sequenced. Gene presence/absence variants and other potentially deleterious mutations are frequent and may be the cause of inbreeding depression. The genome sequence will facilitate genetic improvements in the potato with a view to improving yield and to increasing disease and stress resistance of this crop, which is a now a significant component of worldwide food production and is becoming increasingly important in the developing world.
format Journal Article
id CGSpace67692
institution CGIAR Consortium
language Inglés
publishDate 2011
publishDateRange 2011
publishDateSort 2011
publisher Springer
publisherStr Springer
record_format dspace
spelling CGSpace676922025-11-06T14:06:09Z Genome sequence and analysis of the tuber crop potato Xu, X. Pan, P. Cheng, S. Zhang, B. Mu, D. Ni, P. Zhang, G. Yang, S. Li, R. Wang, S. Orjeda, G. Guzmán, F. Torres, M. Lozano, R. Ponce, O. Martínez, D. Cruz, G. de la Chakrabarti, S.K. Patil, V.U. Skryabin, K.G. Kuznetsov, B.B. Ravin, N.V. Kolganova, T.V. Beletsky, A.V. Mardanov, A.V. Genova, A.D. Bolser, D.M. Martin, D.M.A. Li, G. Yang, Y. Kuang, H. Hu, Q. Xiong, X. Bishop, G.J. Sagredo, B. Mejia, N. Zagorski, W. Gromadka, R. Gawor, J. Szczesny, P. Huang, S. Zhang, Z. Liang, C. He, J. Li, Y. He, Y. Xu, J. Zhang Yanyan Xie, B. Du, Y. Qu, D. Bonierbale, Merideth W. Ghislain, M. Herrera, M.R. Giuliano, G. Pietrella, M. Perrotta, G. Facella, P. O'Brien, K. Feingold, S.E. Barreiro, L.E. Massa, G.A. Diambra, L. Whitty, B.R. Vaillancourt, B. Lin, H. Massa, A.N. Geoffroy, M. Lundback, S. DellaPenna, D. Buell, R. Sharma, S.K. Marshall, D.F. Waugh, R. Bryan, Glenn J. Destefanis, M. Nagy, I. Milbourne, D. Thomson, S.J. Fiers, M. Jacobs, J.M.E. Nielsen, K.L. Sonderkaer, M. Iovene, M. Torres, G.A. Jiang, J. Veilleux, R.E. Bachem, C.W.B. Boer, J. de. Borm, T. Kloosterman, B. Eck, H. van. Datema, E. Lintel Hekkert, B. te. Goverse, A. Ham, R.C.H.J. van. Visser, Richard G.F. potatoes gene mapping genomics heterozygotes inbreeding disease resistance plant breeding plant genetics Potato (Solanum tuberosum L.) is the world’s most important non-grain food crop and is central to global food security. It is clonally propagated, highly heterozygous, autotetraploid, and suffers acute inbreeding depression. Here we use a homozygous doubled-monoploid potato clone to sequence and assemble 86% of the 844-megabase genome. We predict 39,031 protein-coding genes and present evidence for at least two genome duplication events indicative of a palaeopolyploid origin. As the first genome sequence of an asterid, the potato genome reveals 2,642 genes specific to this large angiosperm clade. We also sequenced a heterozygous diploid clone and show that gene presence/absence variants and other potentially deleterious mutations occur frequently and are a likely cause of inbreeding depression. Gene family expansion, tissue-specific expression and recruitment of genes to new pathways contributed to the evolution of tuber development. The potato genome sequence provides a platform for genetic improvement of this vital crop. The genome of the potato (Solanum tuberosum L.), a staple crop vital to food security, has been sequenced. The Potato Genome Sequencing Consortium sequenced a homozygous doubled-monoploid potato clone as well as a heterozygous diploid clone. Genome analysis reveals traces of at least two genome duplication events and genes specific to Asterids, a large clade of flowering plants of which the potato is the first to be sequenced. Gene presence/absence variants and other potentially deleterious mutations are frequent and may be the cause of inbreeding depression. The genome sequence will facilitate genetic improvements in the potato with a view to improving yield and to increasing disease and stress resistance of this crop, which is a now a significant component of worldwide food production and is becoming increasingly important in the developing world. 2011-07 2015-07-30T06:21:05Z 2015-07-30T06:21:05Z Journal Article https://hdl.handle.net/10568/67692 en Open Access application/pdf Springer Xu, X.; Pan, P.; Cheng, S.; Zhang, B.; Mu, D.; Ni, P.; Zhang, G.; Yang, S.; Li, R.; Wang, J.; Orjeda, G.; Guzman, F.; Torres, M.; Lozano, R.; Ponce, O.; Martinez, D.; Cruz, G. de la.; Chakrabarti, S.K.; Patil, V.U.; Skryabin, K.G.; Kuznetsov, B.B.; Ravin, N.V.; Kolganova, T.V.; Beletsky, A.V.; Mardanov, A.V.; Genova, A.D.; Bolser, D.M.; Martin, D.M.A.; Li, G.; Yang, Y.; Kuang, H.; Hu, Q.; Xiong, X.; Bishop, G.J.; Sagredo, B.; Mejia, N.; Zagorski, W.; Gromadka, R.; Gawor, J.; Szczesny, P.; Huang, S.; Zhang, Z.; Liang, C.; He, J.; Li, Y.; He, Y.; Xu, J.; Zhang, Y.; Xie, B.; Du, Y.; Qu, D.; Bonierbale, M.; Ghislain, M.; Herrera, M.R.; Giuliano, G.; Pietrella, M.; Perrotta, G.; Facella, P.; OメBrien, K; Feingold, S.E.; Barreiro, L.E.; Massa, G.A.; Diambra, L.; Whitty, B.R.; Vaillancourt, B.; Lin, H.; Massa, A.N.; Geoffroy, M.; Lundback, S.; DellaPenna, D.; Buell, R.; Sharma, S.K.; Marshall, D.F.; Waugh, R.; Bryan, G.J.; Destefanis, M.; Nagy, I.; Milbourne, D.; Thomson, S.J.; Fiers, M.; Jacobs, J.M.E.; Nielsen, K.L.; Sonderkaer, M.; Iovene, M.; Torres, G.A.; Jiang, J.; Veilleux, R.E.; Bachem, C.W.B.; Boer, J. de.; Borm, T.; Kloosterman, B.; Eck, H. van.; Datema, E.; Lintel Hekkert, B. te.; Goverse, A.; Ham, R.C.H.J. van.; Visser, R.G.F. 2011. Genome sequence and analysis of the tuber crop potato. Nature. (USA). ISSN 0028-0836. 475(7355):189-195.
spellingShingle potatoes
gene mapping
genomics
heterozygotes
inbreeding
disease resistance
plant breeding
plant genetics
Xu, X.
Pan, P.
Cheng, S.
Zhang, B.
Mu, D.
Ni, P.
Zhang, G.
Yang, S.
Li, R.
Wang, S.
Orjeda, G.
Guzmán, F.
Torres, M.
Lozano, R.
Ponce, O.
Martínez, D.
Cruz, G. de la
Chakrabarti, S.K.
Patil, V.U.
Skryabin, K.G.
Kuznetsov, B.B.
Ravin, N.V.
Kolganova, T.V.
Beletsky, A.V.
Mardanov, A.V.
Genova, A.D.
Bolser, D.M.
Martin, D.M.A.
Li, G.
Yang, Y.
Kuang, H.
Hu, Q.
Xiong, X.
Bishop, G.J.
Sagredo, B.
Mejia, N.
Zagorski, W.
Gromadka, R.
Gawor, J.
Szczesny, P.
Huang, S.
Zhang, Z.
Liang, C.
He, J.
Li, Y.
He, Y.
Xu, J.
Zhang Yanyan
Xie, B.
Du, Y.
Qu, D.
Bonierbale, Merideth W.
Ghislain, M.
Herrera, M.R.
Giuliano, G.
Pietrella, M.
Perrotta, G.
Facella, P.
O'Brien, K.
Feingold, S.E.
Barreiro, L.E.
Massa, G.A.
Diambra, L.
Whitty, B.R.
Vaillancourt, B.
Lin, H.
Massa, A.N.
Geoffroy, M.
Lundback, S.
DellaPenna, D.
Buell, R.
Sharma, S.K.
Marshall, D.F.
Waugh, R.
Bryan, Glenn J.
Destefanis, M.
Nagy, I.
Milbourne, D.
Thomson, S.J.
Fiers, M.
Jacobs, J.M.E.
Nielsen, K.L.
Sonderkaer, M.
Iovene, M.
Torres, G.A.
Jiang, J.
Veilleux, R.E.
Bachem, C.W.B.
Boer, J. de.
Borm, T.
Kloosterman, B.
Eck, H. van.
Datema, E.
Lintel Hekkert, B. te.
Goverse, A.
Ham, R.C.H.J. van.
Visser, Richard G.F.
Genome sequence and analysis of the tuber crop potato
title Genome sequence and analysis of the tuber crop potato
title_full Genome sequence and analysis of the tuber crop potato
title_fullStr Genome sequence and analysis of the tuber crop potato
title_full_unstemmed Genome sequence and analysis of the tuber crop potato
title_short Genome sequence and analysis of the tuber crop potato
title_sort genome sequence and analysis of the tuber crop potato
topic potatoes
gene mapping
genomics
heterozygotes
inbreeding
disease resistance
plant breeding
plant genetics
url https://hdl.handle.net/10568/67692
work_keys_str_mv AT xux genomesequenceandanalysisofthetubercroppotato
AT panp genomesequenceandanalysisofthetubercroppotato
AT chengs genomesequenceandanalysisofthetubercroppotato
AT zhangb genomesequenceandanalysisofthetubercroppotato
AT mud genomesequenceandanalysisofthetubercroppotato
AT nip genomesequenceandanalysisofthetubercroppotato
AT zhangg genomesequenceandanalysisofthetubercroppotato
AT yangs genomesequenceandanalysisofthetubercroppotato
AT lir genomesequenceandanalysisofthetubercroppotato
AT wangs genomesequenceandanalysisofthetubercroppotato
AT orjedag genomesequenceandanalysisofthetubercroppotato
AT guzmanf genomesequenceandanalysisofthetubercroppotato
AT torresm genomesequenceandanalysisofthetubercroppotato
AT lozanor genomesequenceandanalysisofthetubercroppotato
AT ponceo genomesequenceandanalysisofthetubercroppotato
AT martinezd genomesequenceandanalysisofthetubercroppotato
AT cruzgdela genomesequenceandanalysisofthetubercroppotato
AT chakrabartisk genomesequenceandanalysisofthetubercroppotato
AT patilvu genomesequenceandanalysisofthetubercroppotato
AT skryabinkg genomesequenceandanalysisofthetubercroppotato
AT kuznetsovbb genomesequenceandanalysisofthetubercroppotato
AT ravinnv genomesequenceandanalysisofthetubercroppotato
AT kolganovatv genomesequenceandanalysisofthetubercroppotato
AT beletskyav genomesequenceandanalysisofthetubercroppotato
AT mardanovav genomesequenceandanalysisofthetubercroppotato
AT genovaad genomesequenceandanalysisofthetubercroppotato
AT bolserdm genomesequenceandanalysisofthetubercroppotato
AT martindma genomesequenceandanalysisofthetubercroppotato
AT lig genomesequenceandanalysisofthetubercroppotato
AT yangy genomesequenceandanalysisofthetubercroppotato
AT kuangh genomesequenceandanalysisofthetubercroppotato
AT huq genomesequenceandanalysisofthetubercroppotato
AT xiongx genomesequenceandanalysisofthetubercroppotato
AT bishopgj genomesequenceandanalysisofthetubercroppotato
AT sagredob genomesequenceandanalysisofthetubercroppotato
AT mejian genomesequenceandanalysisofthetubercroppotato
AT zagorskiw genomesequenceandanalysisofthetubercroppotato
AT gromadkar genomesequenceandanalysisofthetubercroppotato
AT gaworj genomesequenceandanalysisofthetubercroppotato
AT szczesnyp genomesequenceandanalysisofthetubercroppotato
AT huangs genomesequenceandanalysisofthetubercroppotato
AT zhangz genomesequenceandanalysisofthetubercroppotato
AT liangc genomesequenceandanalysisofthetubercroppotato
AT hej genomesequenceandanalysisofthetubercroppotato
AT liy genomesequenceandanalysisofthetubercroppotato
AT hey genomesequenceandanalysisofthetubercroppotato
AT xuj genomesequenceandanalysisofthetubercroppotato
AT zhangyanyan genomesequenceandanalysisofthetubercroppotato
AT xieb genomesequenceandanalysisofthetubercroppotato
AT duy genomesequenceandanalysisofthetubercroppotato
AT qud genomesequenceandanalysisofthetubercroppotato
AT bonierbalemeridethw genomesequenceandanalysisofthetubercroppotato
AT ghislainm genomesequenceandanalysisofthetubercroppotato
AT herreramr genomesequenceandanalysisofthetubercroppotato
AT giulianog genomesequenceandanalysisofthetubercroppotato
AT pietrellam genomesequenceandanalysisofthetubercroppotato
AT perrottag genomesequenceandanalysisofthetubercroppotato
AT facellap genomesequenceandanalysisofthetubercroppotato
AT obrienk genomesequenceandanalysisofthetubercroppotato
AT feingoldse genomesequenceandanalysisofthetubercroppotato
AT barreirole genomesequenceandanalysisofthetubercroppotato
AT massaga genomesequenceandanalysisofthetubercroppotato
AT diambral genomesequenceandanalysisofthetubercroppotato
AT whittybr genomesequenceandanalysisofthetubercroppotato
AT vaillancourtb genomesequenceandanalysisofthetubercroppotato
AT linh genomesequenceandanalysisofthetubercroppotato
AT massaan genomesequenceandanalysisofthetubercroppotato
AT geoffroym genomesequenceandanalysisofthetubercroppotato
AT lundbacks genomesequenceandanalysisofthetubercroppotato
AT dellapennad genomesequenceandanalysisofthetubercroppotato
AT buellr genomesequenceandanalysisofthetubercroppotato
AT sharmask genomesequenceandanalysisofthetubercroppotato
AT marshalldf genomesequenceandanalysisofthetubercroppotato
AT waughr genomesequenceandanalysisofthetubercroppotato
AT bryanglennj genomesequenceandanalysisofthetubercroppotato
AT destefanism genomesequenceandanalysisofthetubercroppotato
AT nagyi genomesequenceandanalysisofthetubercroppotato
AT milbourned genomesequenceandanalysisofthetubercroppotato
AT thomsonsj genomesequenceandanalysisofthetubercroppotato
AT fiersm genomesequenceandanalysisofthetubercroppotato
AT jacobsjme genomesequenceandanalysisofthetubercroppotato
AT nielsenkl genomesequenceandanalysisofthetubercroppotato
AT sonderkaerm genomesequenceandanalysisofthetubercroppotato
AT iovenem genomesequenceandanalysisofthetubercroppotato
AT torresga genomesequenceandanalysisofthetubercroppotato
AT jiangj genomesequenceandanalysisofthetubercroppotato
AT veilleuxre genomesequenceandanalysisofthetubercroppotato
AT bachemcwb genomesequenceandanalysisofthetubercroppotato
AT boerjde genomesequenceandanalysisofthetubercroppotato
AT bormt genomesequenceandanalysisofthetubercroppotato
AT kloostermanb genomesequenceandanalysisofthetubercroppotato
AT eckhvan genomesequenceandanalysisofthetubercroppotato
AT datemae genomesequenceandanalysisofthetubercroppotato
AT lintelhekkertbte genomesequenceandanalysisofthetubercroppotato
AT goversea genomesequenceandanalysisofthetubercroppotato
AT hamrchjvan genomesequenceandanalysisofthetubercroppotato
AT visserrichardgf genomesequenceandanalysisofthetubercroppotato