Genome sequence and analysis of the tuber crop potato
Potato (Solanum tuberosum L.) is the world’s most important non-grain food crop and is central to global food security. It is clonally propagated, highly heterozygous, autotetraploid, and suffers acute inbreeding depression. Here we use a homozygous doubled-monoploid potato clone to sequence and ass...
| Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
|---|---|
| Formato: | Journal Article |
| Lenguaje: | Inglés |
| Publicado: |
Springer
2011
|
| Materias: | |
| Acceso en línea: | https://hdl.handle.net/10568/67692 |
| Sumario: | Potato (Solanum tuberosum L.) is the world’s most important non-grain food crop and is central to global food security. It is clonally propagated, highly heterozygous, autotetraploid, and suffers acute inbreeding depression. Here we use a homozygous doubled-monoploid potato clone to sequence and assemble 86% of the 844-megabase genome. We predict 39,031 protein-coding genes and present evidence for at least two genome duplication events indicative of a palaeopolyploid origin. As the first genome sequence of an asterid, the potato genome reveals 2,642 genes specific to this large angiosperm clade. We also sequenced a heterozygous diploid clone and show that gene presence/absence variants and other potentially deleterious mutations occur frequently and are a likely cause of inbreeding depression. Gene family expansion, tissue-specific expression and recruitment of genes to new pathways contributed to the evolution of tuber development. The potato genome sequence provides a platform for genetic improvement of this vital crop. The genome of the potato (Solanum tuberosum L.), a staple crop vital to food security, has been sequenced. The Potato Genome Sequencing Consortium sequenced a homozygous doubled-monoploid potato clone as well as a heterozygous diploid clone. Genome analysis reveals traces of at least two genome duplication events and genes specific to Asterids, a large clade of flowering plants of which the potato is the first to be sequenced. Gene presence/absence variants and other potentially deleterious mutations are frequent and may be the cause of inbreeding depression. The genome sequence will facilitate genetic improvements in the potato with a view to improving yield and to increasing disease and stress resistance of this crop, which is a now a significant component of worldwide food production and is becoming increasingly important in the developing world. |
|---|