Informe final Datathon CIP 2025
The Datathon CIP 2025 was a national open innovation initiative that mobilized data scientists, students, and professionals to co-create digital solutions for the restoration of high-Andean ecosystems and water security in southern Peru. Using open datasets on climate, hydrology, vegetation, soil ca...
| Autores principales: | , , , |
|---|---|
| Formato: | Informe técnico |
| Lenguaje: | Español |
| Publicado: |
2025
|
| Materias: | |
| Acceso en línea: | https://hdl.handle.net/10568/178857 |
| _version_ | 1855540600441405440 |
|---|---|
| author | Fuentes, A. Juarez, H. Ochoa, J. Haan, Stef de |
| author_browse | Fuentes, A. Haan, Stef de Juarez, H. Ochoa, J. |
| author_facet | Fuentes, A. Juarez, H. Ochoa, J. Haan, Stef de |
| author_sort | Fuentes, A. |
| collection | Repository of Agricultural Research Outputs (CGSpace) |
| description | The Datathon CIP 2025 was a national open innovation initiative that mobilized data scientists, students, and professionals to co-create digital solutions for the restoration of high-Andean ecosystems and water security in southern Peru. Using open datasets on climate, hydrology, vegetation, soil carbon, and wildlife, participants developed machine learning models, geospatial analyses, and decision-support tools to assess pastureland restoration, ecosystem services, and climate resilience. The initiative demonstrates how data-driven innovation can support sustainable land management, ecosystem restoration, and community resilience in vulnerable highland landscapes. |
| format | Informe técnico |
| id | CGSpace178857 |
| institution | CGIAR Consortium |
| language | Español |
| publishDate | 2025 |
| publishDateRange | 2025 |
| publishDateSort | 2025 |
| record_format | dspace |
| spelling | CGSpace1788572026-01-07T02:16:44Z Informe final Datathon CIP 2025 Fuentes, A. Juarez, H. Ochoa, J. Haan, Stef de ecosystem restoration grassland management climate change adaptation remote sensing The Datathon CIP 2025 was a national open innovation initiative that mobilized data scientists, students, and professionals to co-create digital solutions for the restoration of high-Andean ecosystems and water security in southern Peru. Using open datasets on climate, hydrology, vegetation, soil carbon, and wildlife, participants developed machine learning models, geospatial analyses, and decision-support tools to assess pastureland restoration, ecosystem services, and climate resilience. The initiative demonstrates how data-driven innovation can support sustainable land management, ecosystem restoration, and community resilience in vulnerable highland landscapes. 2025-12 2025-12-16T15:02:10Z 2025-12-16T15:02:10Z Report https://hdl.handle.net/10568/178857 es Open Access application/pdf Fuentes, A.; Juarez, H.; Ochoa, J.; Haan, Stef de. 2025. Informe final Datathon CIP 2025. International Potato Center. https://doi.org/10.4160/cip.2025.12.004 |
| spellingShingle | ecosystem restoration grassland management climate change adaptation remote sensing Fuentes, A. Juarez, H. Ochoa, J. Haan, Stef de Informe final Datathon CIP 2025 |
| title | Informe final Datathon CIP 2025 |
| title_full | Informe final Datathon CIP 2025 |
| title_fullStr | Informe final Datathon CIP 2025 |
| title_full_unstemmed | Informe final Datathon CIP 2025 |
| title_short | Informe final Datathon CIP 2025 |
| title_sort | informe final datathon cip 2025 |
| topic | ecosystem restoration grassland management climate change adaptation remote sensing |
| url | https://hdl.handle.net/10568/178857 |
| work_keys_str_mv | AT fuentesa informefinaldatathoncip2025 AT juarezh informefinaldatathoncip2025 AT ochoaj informefinaldatathoncip2025 AT haanstefde informefinaldatathoncip2025 |