Enhancing wheat genomic prediction by a hybrid kernel approach

This study integrates genomic and pedigree data by leveraging advanced modeling techniques, aiming to enhance the predictive performance of genomic selection models by capturing complex genetic relationships through the interaction of both matrices and exploring the utility of non-linear methods, su...

Descripción completa

Detalles Bibliográficos
Autores principales: Cuevas, Jaime, Crossa, Jose, Montesinos-Lopez, Abelardo, Martini, Johannes W.R., Gerard, Guillermo Sebastián, Ortegón, Jaime, Dreisigacker, Susanne, Velu, Govindan, Perez-Rodriguez, Paulino, Saint Pierre, Carolina, Crespo-Herrera, Leonardo Abdiel, Montesinos-Lopez, Osval A., Vitale, Paolo
Formato: Journal Article
Lenguaje:Inglés
Publicado: Frontiers Media 2025
Materias:
Acceso en línea:https://hdl.handle.net/10568/177386
_version_ 1855513982755930112
author Cuevas, Jaime
Crossa, Jose
Montesinos-Lopez, Abelardo
Martini, Johannes W.R.
Gerard, Guillermo Sebastián
Ortegón, Jaime
Dreisigacker, Susanne
Velu, Govindan
Perez-Rodriguez, Paulino
Saint Pierre, Carolina
Crespo-Herrera, Leonardo Abdiel
Montesinos-Lopez, Osval A.
Vitale, Paolo
author_browse Crespo-Herrera, Leonardo Abdiel
Crossa, Jose
Cuevas, Jaime
Dreisigacker, Susanne
Gerard, Guillermo Sebastián
Martini, Johannes W.R.
Montesinos-Lopez, Abelardo
Montesinos-Lopez, Osval A.
Ortegón, Jaime
Perez-Rodriguez, Paulino
Saint Pierre, Carolina
Velu, Govindan
Vitale, Paolo
author_facet Cuevas, Jaime
Crossa, Jose
Montesinos-Lopez, Abelardo
Martini, Johannes W.R.
Gerard, Guillermo Sebastián
Ortegón, Jaime
Dreisigacker, Susanne
Velu, Govindan
Perez-Rodriguez, Paulino
Saint Pierre, Carolina
Crespo-Herrera, Leonardo Abdiel
Montesinos-Lopez, Osval A.
Vitale, Paolo
author_sort Cuevas, Jaime
collection Repository of Agricultural Research Outputs (CGSpace)
description This study integrates genomic and pedigree data by leveraging advanced modeling techniques, aiming to enhance the predictive performance of genomic selection models by capturing complex genetic relationships through the interaction of both matrices and exploring the utility of non-linear methods, such as kernel matrices. Our goal was to improve genomic prediction accuracy by combining the pedigree-based or genetic similarity matrix ( A ) with the genomic similarity matrix ( G ). Using various wheat datasets, we performed five single-environment models and five multi-environment models that incorporated genotype-by-environment (G x E) interactions. The proposed models S5 and M5 significantly enhanced prediction accuracy by incorporating two novel symmetric kernels, C and P , derived from the interaction of genomic and pedigree matrices. These hybrid kernels captured additional, independent genetic variation not explained by conventional matrices. The proposed prediction model outperformed the standard conventional models in most single-environment and multi-environment models. The genomic models with non-linear kernels were better predictors than the linear prediction models.
format Journal Article
id CGSpace177386
institution CGIAR Consortium
language Inglés
publishDate 2025
publishDateRange 2025
publishDateSort 2025
publisher Frontiers Media
publisherStr Frontiers Media
record_format dspace
spelling CGSpace1773862025-10-29T02:00:42Z Enhancing wheat genomic prediction by a hybrid kernel approach Cuevas, Jaime Crossa, Jose Montesinos-Lopez, Abelardo Martini, Johannes W.R. Gerard, Guillermo Sebastián Ortegón, Jaime Dreisigacker, Susanne Velu, Govindan Perez-Rodriguez, Paulino Saint Pierre, Carolina Crespo-Herrera, Leonardo Abdiel Montesinos-Lopez, Osval A. Vitale, Paolo genomics pedigrees environment genotype environment interaction This study integrates genomic and pedigree data by leveraging advanced modeling techniques, aiming to enhance the predictive performance of genomic selection models by capturing complex genetic relationships through the interaction of both matrices and exploring the utility of non-linear methods, such as kernel matrices. Our goal was to improve genomic prediction accuracy by combining the pedigree-based or genetic similarity matrix ( A ) with the genomic similarity matrix ( G ). Using various wheat datasets, we performed five single-environment models and five multi-environment models that incorporated genotype-by-environment (G x E) interactions. The proposed models S5 and M5 significantly enhanced prediction accuracy by incorporating two novel symmetric kernels, C and P , derived from the interaction of genomic and pedigree matrices. These hybrid kernels captured additional, independent genetic variation not explained by conventional matrices. The proposed prediction model outperformed the standard conventional models in most single-environment and multi-environment models. The genomic models with non-linear kernels were better predictors than the linear prediction models. 2025-08-01 2025-10-28T18:47:17Z 2025-10-28T18:47:17Z Journal Article https://hdl.handle.net/10568/177386 en Open Access application/pdf Frontiers Media Cuevas, J., Crossa, J., Montesinos-López, A., Martini, J. W. R., Gerard, G. S., Ortegón, J., Dreisigacker, S., Govindan, V., Pérez-Rodríguez, P., Saint Pierre, C., Herrera, L. A. C., Montesinos-López, O. A., & Vitale, P. (2025). Enhancing wheat genomic prediction by a hybrid kernel approach. Frontiers in Plant Science, 16, 1605202. https://doi.org/10.3389/fpls.2025.1605202
spellingShingle genomics
pedigrees
environment
genotype environment interaction
Cuevas, Jaime
Crossa, Jose
Montesinos-Lopez, Abelardo
Martini, Johannes W.R.
Gerard, Guillermo Sebastián
Ortegón, Jaime
Dreisigacker, Susanne
Velu, Govindan
Perez-Rodriguez, Paulino
Saint Pierre, Carolina
Crespo-Herrera, Leonardo Abdiel
Montesinos-Lopez, Osval A.
Vitale, Paolo
Enhancing wheat genomic prediction by a hybrid kernel approach
title Enhancing wheat genomic prediction by a hybrid kernel approach
title_full Enhancing wheat genomic prediction by a hybrid kernel approach
title_fullStr Enhancing wheat genomic prediction by a hybrid kernel approach
title_full_unstemmed Enhancing wheat genomic prediction by a hybrid kernel approach
title_short Enhancing wheat genomic prediction by a hybrid kernel approach
title_sort enhancing wheat genomic prediction by a hybrid kernel approach
topic genomics
pedigrees
environment
genotype environment interaction
url https://hdl.handle.net/10568/177386
work_keys_str_mv AT cuevasjaime enhancingwheatgenomicpredictionbyahybridkernelapproach
AT crossajose enhancingwheatgenomicpredictionbyahybridkernelapproach
AT montesinoslopezabelardo enhancingwheatgenomicpredictionbyahybridkernelapproach
AT martinijohanneswr enhancingwheatgenomicpredictionbyahybridkernelapproach
AT gerardguillermosebastian enhancingwheatgenomicpredictionbyahybridkernelapproach
AT ortegonjaime enhancingwheatgenomicpredictionbyahybridkernelapproach
AT dreisigackersusanne enhancingwheatgenomicpredictionbyahybridkernelapproach
AT velugovindan enhancingwheatgenomicpredictionbyahybridkernelapproach
AT perezrodriguezpaulino enhancingwheatgenomicpredictionbyahybridkernelapproach
AT saintpierrecarolina enhancingwheatgenomicpredictionbyahybridkernelapproach
AT crespoherreraleonardoabdiel enhancingwheatgenomicpredictionbyahybridkernelapproach
AT montesinoslopezosvala enhancingwheatgenomicpredictionbyahybridkernelapproach
AT vitalepaolo enhancingwheatgenomicpredictionbyahybridkernelapproach