Enhancing wheat genomic prediction by a hybrid kernel approach
This study integrates genomic and pedigree data by leveraging advanced modeling techniques, aiming to enhance the predictive performance of genomic selection models by capturing complex genetic relationships through the interaction of both matrices and exploring the utility of non-linear methods, su...
| Autores principales: | , , , , , , , , , , , , |
|---|---|
| Formato: | Journal Article |
| Lenguaje: | Inglés |
| Publicado: |
Frontiers Media
2025
|
| Materias: | |
| Acceso en línea: | https://hdl.handle.net/10568/177386 |
Ejemplares similares: Enhancing wheat genomic prediction by a hybrid kernel approach
- Boosting genomic prediction transferability with sparse testing
- Machine learning algorithms translate big data into predictive breeding accuracy
- Genomic prediction powered by multi-omics data
- Bayesian multitrait kernel methods improve multienvironment genome-based prediction
- Improving wheat grain yield genomic prediction accuracy using historical data
- Optimizing genomic prediction with transfer learning under a ridge regression framework