Expanding genomic prediction in plant breeding: harnessing big data, machine learning, and advanced software

With growing evidence that genomic selection (GS) improves genetic gains in plant breeding, it is timely to review the key factors that improve its efficiency. In this feature review, we focus on the statistical machine learning (ML) methods and software that are democratizing GS methodology. We out...

Descripción completa

Detalles Bibliográficos
Autores principales: Crossa, José, Martini, Johannes W.R., Vitale, Paolo, Perez-Rodriguez, Paulino, Costa-Neto, Germano, Fritsche-Neto, Roberto, Runcie, Daniel E., Cuevas, Jaime, Toledo, Fernando H., Huihui Li, De Vita, Pasquale, Gerard, Guillermo S., Dreisigacker, Susanne, Crespo-Herrera, Leonardo A., Saint Pierre, Carolina, Bentley, Alison R., Lillemo, Morten, Ortiz, Rodomiro, Montesinos-Lopez, Osval A., Montesinos-López, Abelardo
Formato: Journal Article
Lenguaje:Inglés
Publicado: Elsevier 2025
Materias:
Acceso en línea:https://hdl.handle.net/10568/173853
_version_ 1855525731109437440
author Crossa, José
Martini, Johannes W.R.
Vitale, Paolo
Perez-Rodriguez, Paulino
Costa-Neto, Germano
Fritsche-Neto, Roberto
Runcie, Daniel E.
Cuevas, Jaime
Toledo, Fernando H.
Huihui Li
De Vita, Pasquale
Gerard, Guillermo S.
Dreisigacker, Susanne
Crespo-Herrera, Leonardo A.
Saint Pierre, Carolina
Bentley, Alison R.
Lillemo, Morten
Ortiz, Rodomiro
Montesinos-Lopez, Osval A.
Montesinos-López, Abelardo
author_browse Bentley, Alison R.
Costa-Neto, Germano
Crespo-Herrera, Leonardo A.
Crossa, José
Cuevas, Jaime
De Vita, Pasquale
Dreisigacker, Susanne
Fritsche-Neto, Roberto
Gerard, Guillermo S.
Huihui Li
Lillemo, Morten
Martini, Johannes W.R.
Montesinos-Lopez, Osval A.
Montesinos-López, Abelardo
Ortiz, Rodomiro
Perez-Rodriguez, Paulino
Runcie, Daniel E.
Saint Pierre, Carolina
Toledo, Fernando H.
Vitale, Paolo
author_facet Crossa, José
Martini, Johannes W.R.
Vitale, Paolo
Perez-Rodriguez, Paulino
Costa-Neto, Germano
Fritsche-Neto, Roberto
Runcie, Daniel E.
Cuevas, Jaime
Toledo, Fernando H.
Huihui Li
De Vita, Pasquale
Gerard, Guillermo S.
Dreisigacker, Susanne
Crespo-Herrera, Leonardo A.
Saint Pierre, Carolina
Bentley, Alison R.
Lillemo, Morten
Ortiz, Rodomiro
Montesinos-Lopez, Osval A.
Montesinos-López, Abelardo
author_sort Crossa, José
collection Repository of Agricultural Research Outputs (CGSpace)
description With growing evidence that genomic selection (GS) improves genetic gains in plant breeding, it is timely to review the key factors that improve its efficiency. In this feature review, we focus on the statistical machine learning (ML) methods and software that are democratizing GS methodology. We outline the principles of genomic-enabled prediction and discuss how statistical ML tools enhance GS efficiency with big data. Additionally, we examine various statistical ML tools developed in recent years for predicting traits across continuous, binary, categorical, and count phenotypes. We highlight the unique advantages of deep learning (DL) models used in genomic prediction (GP). Finally, we review software developed to democratize the use of GP models and recent data management tools that support the adoption of GS methodology.
format Journal Article
id CGSpace173853
institution CGIAR Consortium
language Inglés
publishDate 2025
publishDateRange 2025
publishDateSort 2025
publisher Elsevier
publisherStr Elsevier
record_format dspace
spelling CGSpace1738532025-10-26T12:55:22Z Expanding genomic prediction in plant breeding: harnessing big data, machine learning, and advanced software Crossa, José Martini, Johannes W.R. Vitale, Paolo Perez-Rodriguez, Paulino Costa-Neto, Germano Fritsche-Neto, Roberto Runcie, Daniel E. Cuevas, Jaime Toledo, Fernando H. Huihui Li De Vita, Pasquale Gerard, Guillermo S. Dreisigacker, Susanne Crespo-Herrera, Leonardo A. Saint Pierre, Carolina Bentley, Alison R. Lillemo, Morten Ortiz, Rodomiro Montesinos-Lopez, Osval A. Montesinos-López, Abelardo models plant breeding genomics forecasting software development marker-assisted selection statistical methods machine learning With growing evidence that genomic selection (GS) improves genetic gains in plant breeding, it is timely to review the key factors that improve its efficiency. In this feature review, we focus on the statistical machine learning (ML) methods and software that are democratizing GS methodology. We outline the principles of genomic-enabled prediction and discuss how statistical ML tools enhance GS efficiency with big data. Additionally, we examine various statistical ML tools developed in recent years for predicting traits across continuous, binary, categorical, and count phenotypes. We highlight the unique advantages of deep learning (DL) models used in genomic prediction (GP). Finally, we review software developed to democratize the use of GP models and recent data management tools that support the adoption of GS methodology. 2025-07 2025-03-25T15:01:38Z 2025-03-25T15:01:38Z Journal Article https://hdl.handle.net/10568/173853 en Open Access application/pdf Elsevier Crossa, J., Martini, J. W. R., Vitale, P., Pérez-Rodríguez, P., Costa-Neto, G., Fritsche-Neto, R., Runcie, D., Cuevas, J., Toledo, F., Li, H., De Vita, P., Gerard, G., Dreisigacker, S., Crespo-Herrera, L., Saint Pierre, C., Bentley, A., Lillemo, M., Ortiz, R., Montesinos-López, O. A., & Montesinos-López, A. (2025). Expanding genomic prediction in plant breeding: Harnessing big data, machine learning, and advanced software. Trends in Plant Science, S1360138524003455. https://doi.org/10.1016/j.tplants.2024.12.009
spellingShingle models
plant breeding
genomics
forecasting
software development
marker-assisted selection
statistical methods
machine learning
Crossa, José
Martini, Johannes W.R.
Vitale, Paolo
Perez-Rodriguez, Paulino
Costa-Neto, Germano
Fritsche-Neto, Roberto
Runcie, Daniel E.
Cuevas, Jaime
Toledo, Fernando H.
Huihui Li
De Vita, Pasquale
Gerard, Guillermo S.
Dreisigacker, Susanne
Crespo-Herrera, Leonardo A.
Saint Pierre, Carolina
Bentley, Alison R.
Lillemo, Morten
Ortiz, Rodomiro
Montesinos-Lopez, Osval A.
Montesinos-López, Abelardo
Expanding genomic prediction in plant breeding: harnessing big data, machine learning, and advanced software
title Expanding genomic prediction in plant breeding: harnessing big data, machine learning, and advanced software
title_full Expanding genomic prediction in plant breeding: harnessing big data, machine learning, and advanced software
title_fullStr Expanding genomic prediction in plant breeding: harnessing big data, machine learning, and advanced software
title_full_unstemmed Expanding genomic prediction in plant breeding: harnessing big data, machine learning, and advanced software
title_short Expanding genomic prediction in plant breeding: harnessing big data, machine learning, and advanced software
title_sort expanding genomic prediction in plant breeding harnessing big data machine learning and advanced software
topic models
plant breeding
genomics
forecasting
software development
marker-assisted selection
statistical methods
machine learning
url https://hdl.handle.net/10568/173853
work_keys_str_mv AT crossajose expandinggenomicpredictioninplantbreedingharnessingbigdatamachinelearningandadvancedsoftware
AT martinijohanneswr expandinggenomicpredictioninplantbreedingharnessingbigdatamachinelearningandadvancedsoftware
AT vitalepaolo expandinggenomicpredictioninplantbreedingharnessingbigdatamachinelearningandadvancedsoftware
AT perezrodriguezpaulino expandinggenomicpredictioninplantbreedingharnessingbigdatamachinelearningandadvancedsoftware
AT costanetogermano expandinggenomicpredictioninplantbreedingharnessingbigdatamachinelearningandadvancedsoftware
AT fritschenetoroberto expandinggenomicpredictioninplantbreedingharnessingbigdatamachinelearningandadvancedsoftware
AT runciedaniele expandinggenomicpredictioninplantbreedingharnessingbigdatamachinelearningandadvancedsoftware
AT cuevasjaime expandinggenomicpredictioninplantbreedingharnessingbigdatamachinelearningandadvancedsoftware
AT toledofernandoh expandinggenomicpredictioninplantbreedingharnessingbigdatamachinelearningandadvancedsoftware
AT huihuili expandinggenomicpredictioninplantbreedingharnessingbigdatamachinelearningandadvancedsoftware
AT devitapasquale expandinggenomicpredictioninplantbreedingharnessingbigdatamachinelearningandadvancedsoftware
AT gerardguillermos expandinggenomicpredictioninplantbreedingharnessingbigdatamachinelearningandadvancedsoftware
AT dreisigackersusanne expandinggenomicpredictioninplantbreedingharnessingbigdatamachinelearningandadvancedsoftware
AT crespoherreraleonardoa expandinggenomicpredictioninplantbreedingharnessingbigdatamachinelearningandadvancedsoftware
AT saintpierrecarolina expandinggenomicpredictioninplantbreedingharnessingbigdatamachinelearningandadvancedsoftware
AT bentleyalisonr expandinggenomicpredictioninplantbreedingharnessingbigdatamachinelearningandadvancedsoftware
AT lillemomorten expandinggenomicpredictioninplantbreedingharnessingbigdatamachinelearningandadvancedsoftware
AT ortizrodomiro expandinggenomicpredictioninplantbreedingharnessingbigdatamachinelearningandadvancedsoftware
AT montesinoslopezosvala expandinggenomicpredictioninplantbreedingharnessingbigdatamachinelearningandadvancedsoftware
AT montesinoslopezabelardo expandinggenomicpredictioninplantbreedingharnessingbigdatamachinelearningandadvancedsoftware