Expanding genomic prediction in plant breeding: harnessing big data, machine learning, and advanced software

With growing evidence that genomic selection (GS) improves genetic gains in plant breeding, it is timely to review the key factors that improve its efficiency. In this feature review, we focus on the statistical machine learning (ML) methods and software that are democratizing GS methodology. We out...

Descripción completa

Detalles Bibliográficos
Autores principales: Crossa, José, Martini, Johannes W.R., Vitale, Paolo, Perez-Rodriguez, Paulino, Costa-Neto, Germano, Fritsche-Neto, Roberto, Runcie, Daniel E., Cuevas, Jaime, Toledo, Fernando H., Huihui Li, De Vita, Pasquale, Gerard, Guillermo S., Dreisigacker, Susanne, Crespo-Herrera, Leonardo A., Saint Pierre, Carolina, Bentley, Alison R., Lillemo, Morten, Ortiz, Rodomiro, Montesinos-Lopez, Osval A., Montesinos-López, Abelardo
Formato: Journal Article
Lenguaje:Inglés
Publicado: Elsevier 2025
Materias:
Acceso en línea:https://hdl.handle.net/10568/173853

Ejemplares similares: Expanding genomic prediction in plant breeding: harnessing big data, machine learning, and advanced software