Machine learning algorithms translate big data into predictive breeding accuracy

Statistical machine learning (ML) extracts patterns from extensive genomic, phenotypic, and environmental data. ML algorithms automatically identify relevant features and use cross-validation to ensure robust models and improve prediction reliability in new lines. Furthermore, ML analyses of genotyp...

Descripción completa

Detalles Bibliográficos
Autores principales: Crossa, José, Montesinos-Lopez, Osval A., Costa-Neto, Germano, Vitale, Paolo, Martini, Johannes W.R., Runcie, Daniel E., Fritsche-Neto, Roberto, Montesinos-Lopez, Abelardo, Perez-Rodriguez, Paulino, Gerard, Guillermo S., Dreisigacker, Susanna, Crespo-Herrera, Leonardo A., Saint Pierre, Carolina, Lillemo, Morten, Cuevas, Jaime, Bentley, Alison R., Ortiz, Rodomiro
Formato: Journal Article
Lenguaje:Inglés
Publicado: Elsevier 2025
Materias:
Acceso en línea:https://hdl.handle.net/10568/169929
_version_ 1855526152080195584
author Crossa, José
Montesinos-Lopez, Osval A.
Costa-Neto, Germano
Vitale, Paolo
Martini, Johannes W.R.
Runcie, Daniel E.
Fritsche-Neto, Roberto
Montesinos-Lopez, Abelardo
Perez-Rodriguez, Paulino
Gerard, Guillermo S.
Dreisigacker, Susanna
Crespo-Herrera, Leonardo A.
Saint Pierre, Carolina
Lillemo, Morten
Cuevas, Jaime
Bentley, Alison R.
Ortiz, Rodomiro
author_browse Bentley, Alison R.
Costa-Neto, Germano
Crespo-Herrera, Leonardo A.
Crossa, José
Cuevas, Jaime
Dreisigacker, Susanna
Fritsche-Neto, Roberto
Gerard, Guillermo S.
Lillemo, Morten
Martini, Johannes W.R.
Montesinos-Lopez, Abelardo
Montesinos-Lopez, Osval A.
Ortiz, Rodomiro
Perez-Rodriguez, Paulino
Runcie, Daniel E.
Saint Pierre, Carolina
Vitale, Paolo
author_facet Crossa, José
Montesinos-Lopez, Osval A.
Costa-Neto, Germano
Vitale, Paolo
Martini, Johannes W.R.
Runcie, Daniel E.
Fritsche-Neto, Roberto
Montesinos-Lopez, Abelardo
Perez-Rodriguez, Paulino
Gerard, Guillermo S.
Dreisigacker, Susanna
Crespo-Herrera, Leonardo A.
Saint Pierre, Carolina
Lillemo, Morten
Cuevas, Jaime
Bentley, Alison R.
Ortiz, Rodomiro
author_sort Crossa, José
collection Repository of Agricultural Research Outputs (CGSpace)
description Statistical machine learning (ML) extracts patterns from extensive genomic, phenotypic, and environmental data. ML algorithms automatically identify relevant features and use cross-validation to ensure robust models and improve prediction reliability in new lines. Furthermore, ML analyses of genotype-by-environment (G×E) interactions can offer insights into the genetic factors that affect performance in specific environments. By leveraging historical breeding data, ML streamlines strategies and automates analyses to reveal genomic patterns. In this review we examine the transformative impact of big data, including multi-trait genomics, phenomics, and environmental covariables, on genomic-enabled prediction in plant breeding. We discuss how big data and ML are revolutionizing the field by enhancing prediction accuracy, deepening our understanding of G×E interactions, and optimizing breeding strategies through the analysis of extensive and diverse datasets.
format Journal Article
id CGSpace169929
institution CGIAR Consortium
language Inglés
publishDate 2025
publishDateRange 2025
publishDateSort 2025
publisher Elsevier
publisherStr Elsevier
record_format dspace
spelling CGSpace1699292025-10-26T12:51:48Z Machine learning algorithms translate big data into predictive breeding accuracy Crossa, José Montesinos-Lopez, Osval A. Costa-Neto, Germano Vitale, Paolo Martini, Johannes W.R. Runcie, Daniel E. Fritsche-Neto, Roberto Montesinos-Lopez, Abelardo Perez-Rodriguez, Paulino Gerard, Guillermo S. Dreisigacker, Susanna Crespo-Herrera, Leonardo A. Saint Pierre, Carolina Lillemo, Morten Cuevas, Jaime Bentley, Alison R. Ortiz, Rodomiro climate change environment genomics breeding programmes statistical methods machine learning big data Statistical machine learning (ML) extracts patterns from extensive genomic, phenotypic, and environmental data. ML algorithms automatically identify relevant features and use cross-validation to ensure robust models and improve prediction reliability in new lines. Furthermore, ML analyses of genotype-by-environment (G×E) interactions can offer insights into the genetic factors that affect performance in specific environments. By leveraging historical breeding data, ML streamlines strategies and automates analyses to reveal genomic patterns. In this review we examine the transformative impact of big data, including multi-trait genomics, phenomics, and environmental covariables, on genomic-enabled prediction in plant breeding. We discuss how big data and ML are revolutionizing the field by enhancing prediction accuracy, deepening our understanding of G×E interactions, and optimizing breeding strategies through the analysis of extensive and diverse datasets. 2025-02 2025-01-25T23:46:20Z 2025-01-25T23:46:20Z Journal Article https://hdl.handle.net/10568/169929 en Open Access application/pdf Elsevier Crossa, J., Montesinos-Lopez, O. A., Costa-Neto, G., Vitale, P., Martini, J. W. R., Runcie, D., Fritsche-Neto, R., Montesinos-Lopez, A., Pérez-Rodríguez, P., Gerard, G., Dreisigacker, S., Crespo-Herrera, L., Pierre, C.S., Lillemo, M., Cuevas, J., Bentley, A., & Ortiz, R. (2024). Machine learning algorithms translate big data into predictive breeding accuracy. Trends in Plant Science. https://doi.org/10.1016/j.tplants.2024.09.011
spellingShingle climate change
environment
genomics
breeding programmes
statistical methods
machine learning
big data
Crossa, José
Montesinos-Lopez, Osval A.
Costa-Neto, Germano
Vitale, Paolo
Martini, Johannes W.R.
Runcie, Daniel E.
Fritsche-Neto, Roberto
Montesinos-Lopez, Abelardo
Perez-Rodriguez, Paulino
Gerard, Guillermo S.
Dreisigacker, Susanna
Crespo-Herrera, Leonardo A.
Saint Pierre, Carolina
Lillemo, Morten
Cuevas, Jaime
Bentley, Alison R.
Ortiz, Rodomiro
Machine learning algorithms translate big data into predictive breeding accuracy
title Machine learning algorithms translate big data into predictive breeding accuracy
title_full Machine learning algorithms translate big data into predictive breeding accuracy
title_fullStr Machine learning algorithms translate big data into predictive breeding accuracy
title_full_unstemmed Machine learning algorithms translate big data into predictive breeding accuracy
title_short Machine learning algorithms translate big data into predictive breeding accuracy
title_sort machine learning algorithms translate big data into predictive breeding accuracy
topic climate change
environment
genomics
breeding programmes
statistical methods
machine learning
big data
url https://hdl.handle.net/10568/169929
work_keys_str_mv AT crossajose machinelearningalgorithmstranslatebigdataintopredictivebreedingaccuracy
AT montesinoslopezosvala machinelearningalgorithmstranslatebigdataintopredictivebreedingaccuracy
AT costanetogermano machinelearningalgorithmstranslatebigdataintopredictivebreedingaccuracy
AT vitalepaolo machinelearningalgorithmstranslatebigdataintopredictivebreedingaccuracy
AT martinijohanneswr machinelearningalgorithmstranslatebigdataintopredictivebreedingaccuracy
AT runciedaniele machinelearningalgorithmstranslatebigdataintopredictivebreedingaccuracy
AT fritschenetoroberto machinelearningalgorithmstranslatebigdataintopredictivebreedingaccuracy
AT montesinoslopezabelardo machinelearningalgorithmstranslatebigdataintopredictivebreedingaccuracy
AT perezrodriguezpaulino machinelearningalgorithmstranslatebigdataintopredictivebreedingaccuracy
AT gerardguillermos machinelearningalgorithmstranslatebigdataintopredictivebreedingaccuracy
AT dreisigackersusanna machinelearningalgorithmstranslatebigdataintopredictivebreedingaccuracy
AT crespoherreraleonardoa machinelearningalgorithmstranslatebigdataintopredictivebreedingaccuracy
AT saintpierrecarolina machinelearningalgorithmstranslatebigdataintopredictivebreedingaccuracy
AT lillemomorten machinelearningalgorithmstranslatebigdataintopredictivebreedingaccuracy
AT cuevasjaime machinelearningalgorithmstranslatebigdataintopredictivebreedingaccuracy
AT bentleyalisonr machinelearningalgorithmstranslatebigdataintopredictivebreedingaccuracy
AT ortizrodomiro machinelearningalgorithmstranslatebigdataintopredictivebreedingaccuracy