Machine learning algorithms translate big data into predictive breeding accuracy
Statistical machine learning (ML) extracts patterns from extensive genomic, phenotypic, and environmental data. ML algorithms automatically identify relevant features and use cross-validation to ensure robust models and improve prediction reliability in new lines. Furthermore, ML analyses of genotyp...
| Autores principales: | , , , , , , , , , , , , , , , , |
|---|---|
| Formato: | Journal Article |
| Lenguaje: | Inglés |
| Publicado: |
Elsevier
2025
|
| Materias: | |
| Acceso en línea: | https://hdl.handle.net/10568/169929 |
Ejemplares similares: Machine learning algorithms translate big data into predictive breeding accuracy
- Enviromic assembly increases accuracy and reduces costs of the genomic prediction for yield plasticity in maize
- Expanding genomic prediction in plant breeding: harnessing big data, machine learning, and advanced software
- A marker weighting approach for enhancing within-family accuracy in genomic prediction
- Improving wheat grain yield genomic prediction accuracy using historical data
- Deep learning methods improve genomic prediction of wheat breeding
- Envirome-wide associations enhance multi-year genome-based prediction of historical wheat breeding data