Digital functional phenomic descriptors featured from machine learning-driven image-based phenotyping improve the accuracy of classic descriptors: A case study on Arachis spp. and Phaseolus spp.

Detalles Bibliográficos
Autores principales: Conejo Rodriguez, F., Gonzalez Guzman, J., Ramirez, Gil J., Urban, Milan Oldřich, Wenzl, Peter
Formato: Ponencia
Lenguaje:Inglés
Publicado: 2023
Materias:
Acceso en línea:https://hdl.handle.net/10568/135933
_version_ 1855513190348095488
author Conejo Rodriguez, F.
Gonzalez Guzman, J.
Ramirez, Gil J.
Urban, Milan Oldřich
Wenzl, Peter
author_browse Conejo Rodriguez, F.
Gonzalez Guzman, J.
Ramirez, Gil J.
Urban, Milan Oldřich
Wenzl, Peter
author_facet Conejo Rodriguez, F.
Gonzalez Guzman, J.
Ramirez, Gil J.
Urban, Milan Oldřich
Wenzl, Peter
author_sort Conejo Rodriguez, F.
collection Repository of Agricultural Research Outputs (CGSpace)
format Ponencia
id CGSpace135933
institution CGIAR Consortium
language Inglés
publishDate 2023
publishDateRange 2023
publishDateSort 2023
record_format dspace
spelling CGSpace1359332025-11-05T12:51:40Z Digital functional phenomic descriptors featured from machine learning-driven image-based phenotyping improve the accuracy of classic descriptors: A case study on Arachis spp. and Phaseolus spp. Conejo Rodriguez, F. Gonzalez Guzman, J. Ramirez, Gil J. Urban, Milan Oldřich Wenzl, Peter evaluation gene banks machine learning agronomic characters phenotyping imagery classification functional diversity 2023-08-01 2023-12-26T13:59:57Z 2023-12-26T13:59:57Z Presentation https://hdl.handle.net/10568/135933 en Open Access application/pdf Conejo Rodriguez, F.; Gonzalez Guzman, J.; Ramirez, G.J.; Urban, M.; Wenzl, P. (2023) Digital functional phenomic descriptors featured from machine learning-driven image-based phenotyping improve the accuracy of classic descriptors: A case study on Arachis spp. and Phaseolus spp. 17 sl.
spellingShingle evaluation
gene banks
machine learning
agronomic characters
phenotyping
imagery
classification
functional diversity
Conejo Rodriguez, F.
Gonzalez Guzman, J.
Ramirez, Gil J.
Urban, Milan Oldřich
Wenzl, Peter
Digital functional phenomic descriptors featured from machine learning-driven image-based phenotyping improve the accuracy of classic descriptors: A case study on Arachis spp. and Phaseolus spp.
title Digital functional phenomic descriptors featured from machine learning-driven image-based phenotyping improve the accuracy of classic descriptors: A case study on Arachis spp. and Phaseolus spp.
title_full Digital functional phenomic descriptors featured from machine learning-driven image-based phenotyping improve the accuracy of classic descriptors: A case study on Arachis spp. and Phaseolus spp.
title_fullStr Digital functional phenomic descriptors featured from machine learning-driven image-based phenotyping improve the accuracy of classic descriptors: A case study on Arachis spp. and Phaseolus spp.
title_full_unstemmed Digital functional phenomic descriptors featured from machine learning-driven image-based phenotyping improve the accuracy of classic descriptors: A case study on Arachis spp. and Phaseolus spp.
title_short Digital functional phenomic descriptors featured from machine learning-driven image-based phenotyping improve the accuracy of classic descriptors: A case study on Arachis spp. and Phaseolus spp.
title_sort digital functional phenomic descriptors featured from machine learning driven image based phenotyping improve the accuracy of classic descriptors a case study on arachis spp and phaseolus spp
topic evaluation
gene banks
machine learning
agronomic characters
phenotyping
imagery
classification
functional diversity
url https://hdl.handle.net/10568/135933
work_keys_str_mv AT conejorodriguezf digitalfunctionalphenomicdescriptorsfeaturedfrommachinelearningdrivenimagebasedphenotypingimprovetheaccuracyofclassicdescriptorsacasestudyonarachissppandphaseolusspp
AT gonzalezguzmanj digitalfunctionalphenomicdescriptorsfeaturedfrommachinelearningdrivenimagebasedphenotypingimprovetheaccuracyofclassicdescriptorsacasestudyonarachissppandphaseolusspp
AT ramirezgilj digitalfunctionalphenomicdescriptorsfeaturedfrommachinelearningdrivenimagebasedphenotypingimprovetheaccuracyofclassicdescriptorsacasestudyonarachissppandphaseolusspp
AT urbanmilanoldrich digitalfunctionalphenomicdescriptorsfeaturedfrommachinelearningdrivenimagebasedphenotypingimprovetheaccuracyofclassicdescriptorsacasestudyonarachissppandphaseolusspp
AT wenzlpeter digitalfunctionalphenomicdescriptorsfeaturedfrommachinelearningdrivenimagebasedphenotypingimprovetheaccuracyofclassicdescriptorsacasestudyonarachissppandphaseolusspp