Grow the pie, or have it? Using machine learning to impact heterogeneity in the Ultra-poor graduation model

Detalles Bibliográficos
Autores principales: Chowdhury, Reajul Alam, Ceballos-Sierra, Federico, Sulaiman, Munshi
Formato: Journal Article
Lenguaje:Inglés
Publicado: Informa UK Limited 2024
Materias:
Acceso en línea:https://hdl.handle.net/10568/134938
_version_ 1855522711248306176
author Chowdhury, Reajul Alam
Ceballos-Sierra, Federico
Sulaiman, Munshi
author_browse Ceballos-Sierra, Federico
Chowdhury, Reajul Alam
Sulaiman, Munshi
author_facet Chowdhury, Reajul Alam
Ceballos-Sierra, Federico
Sulaiman, Munshi
author_sort Chowdhury, Reajul Alam
collection Repository of Agricultural Research Outputs (CGSpace)
format Journal Article
id CGSpace134938
institution CGIAR Consortium
language Inglés
publishDate 2024
publishDateRange 2024
publishDateSort 2024
publisher Informa UK Limited
publisherStr Informa UK Limited
record_format dspace
spelling CGSpace1349382025-10-26T12:51:48Z Grow the pie, or have it? Using machine learning to impact heterogeneity in the Ultra-poor graduation model Chowdhury, Reajul Alam Ceballos-Sierra, Federico Sulaiman, Munshi evaluation machine learning modelling poverty impact poverty alleviation household expenditure 2024-04-02 2023-12-04T08:47:06Z 2023-12-04T08:47:06Z Journal Article https://hdl.handle.net/10568/134938 en Limited Access Informa UK Limited Chowdhury, R.A.; Ceballos-Sierra, F.; Sulaiman, M. (2023) Grow the pie, or have it? Using machine learning to impact heterogeneity in the Ultra-poor graduation model. Journal of Development Effectiveness, Online first paper (2023-11-22). ISSN: 1943-9407
spellingShingle evaluation
machine learning
modelling
poverty
impact
poverty alleviation
household expenditure
Chowdhury, Reajul Alam
Ceballos-Sierra, Federico
Sulaiman, Munshi
Grow the pie, or have it? Using machine learning to impact heterogeneity in the Ultra-poor graduation model
title Grow the pie, or have it? Using machine learning to impact heterogeneity in the Ultra-poor graduation model
title_full Grow the pie, or have it? Using machine learning to impact heterogeneity in the Ultra-poor graduation model
title_fullStr Grow the pie, or have it? Using machine learning to impact heterogeneity in the Ultra-poor graduation model
title_full_unstemmed Grow the pie, or have it? Using machine learning to impact heterogeneity in the Ultra-poor graduation model
title_short Grow the pie, or have it? Using machine learning to impact heterogeneity in the Ultra-poor graduation model
title_sort grow the pie or have it using machine learning to impact heterogeneity in the ultra poor graduation model
topic evaluation
machine learning
modelling
poverty
impact
poverty alleviation
household expenditure
url https://hdl.handle.net/10568/134938
work_keys_str_mv AT chowdhuryreajulalam growthepieorhaveitusingmachinelearningtoimpactheterogeneityintheultrapoorgraduationmodel
AT ceballossierrafederico growthepieorhaveitusingmachinelearningtoimpactheterogeneityintheultrapoorgraduationmodel
AT sulaimanmunshi growthepieorhaveitusingmachinelearningtoimpactheterogeneityintheultrapoorgraduationmodel