Near-infrared spectroscopy to predict provitamin A carotenoids content in maize

Vitamin A deficiency (VAD) is a public health issue worldwide. Provitamin A (PVA) biofortified maize serves as an alternative to help combat VAD. Breeding efforts to develop maize varieties with high PVA carotenoid content combine molecular and phenotypic selection strategies. The phenotypic assessm...

Descripción completa

Detalles Bibliográficos
Autores principales: Rosales Nolasco, Aldo, Crossa, José, Cuevas, Jaime, Cabrera-Soto, Luisa María, Dhliwayo, Thanda, Ndhlela, Thokozile, Palacios Rojas, Natalia
Formato: Journal Article
Lenguaje:Inglés
Publicado: MDPI 2022
Materias:
Acceso en línea:https://hdl.handle.net/10568/126449
_version_ 1855513489649434624
author Rosales Nolasco, Aldo
Crossa, José
Cuevas, Jaime
Cabrera-Soto, Luisa María
Dhliwayo, Thanda
Ndhlela, Thokozile
Palacios Rojas, Natalia
author_browse Cabrera-Soto, Luisa María
Crossa, José
Cuevas, Jaime
Dhliwayo, Thanda
Ndhlela, Thokozile
Palacios Rojas, Natalia
Rosales Nolasco, Aldo
author_facet Rosales Nolasco, Aldo
Crossa, José
Cuevas, Jaime
Cabrera-Soto, Luisa María
Dhliwayo, Thanda
Ndhlela, Thokozile
Palacios Rojas, Natalia
author_sort Rosales Nolasco, Aldo
collection Repository of Agricultural Research Outputs (CGSpace)
description Vitamin A deficiency (VAD) is a public health issue worldwide. Provitamin A (PVA) biofortified maize serves as an alternative to help combat VAD. Breeding efforts to develop maize varieties with high PVA carotenoid content combine molecular and phenotypic selection strategies. The phenotypic assessment of carotenoids is currently done using liquid chromatography, a precise but time-and resource-consuming methodology. Using near-infrared spectroscopy (NIRS) could increase the breeding efficiency. This study used ultra-performance liquid chromatography (UPLC) data from 1857 tropical maize genotypes as a training set and NIRS data to do an independent test of a set of 650 genotypes to predict PVA carotenoids using Bayesian and modified partial least square (MPLS) regression models. Both regression methods produced similar prediction accuracies for the total carotenoids (r2 = 0.75), lutein (r2 = 0.55), zeaxanthin (r2 = 0.61), β-carotene (r2 = 0.22) and β-cryptoxanthin (BCX) (r2 = 0.57). These results demonstrate that Bayesian and MPLS regression of BCX on NIRS data can be used to predict BCX content, the current focus on PVA enhancement, and thus offers opportunities for high-throughput phenotyping at a low cost, especially in the early stages of PVA maize breeding pipeline when many genotypes must be screened.
format Journal Article
id CGSpace126449
institution CGIAR Consortium
language Inglés
publishDate 2022
publishDateRange 2022
publishDateSort 2022
publisher MDPI
publisherStr MDPI
record_format dspace
spelling CGSpace1264492025-12-08T10:29:22Z Near-infrared spectroscopy to predict provitamin A carotenoids content in maize Rosales Nolasco, Aldo Crossa, José Cuevas, Jaime Cabrera-Soto, Luisa María Dhliwayo, Thanda Ndhlela, Thokozile Palacios Rojas, Natalia biofortification carotenoids maize zea mays Vitamin A deficiency (VAD) is a public health issue worldwide. Provitamin A (PVA) biofortified maize serves as an alternative to help combat VAD. Breeding efforts to develop maize varieties with high PVA carotenoid content combine molecular and phenotypic selection strategies. The phenotypic assessment of carotenoids is currently done using liquid chromatography, a precise but time-and resource-consuming methodology. Using near-infrared spectroscopy (NIRS) could increase the breeding efficiency. This study used ultra-performance liquid chromatography (UPLC) data from 1857 tropical maize genotypes as a training set and NIRS data to do an independent test of a set of 650 genotypes to predict PVA carotenoids using Bayesian and modified partial least square (MPLS) regression models. Both regression methods produced similar prediction accuracies for the total carotenoids (r2 = 0.75), lutein (r2 = 0.55), zeaxanthin (r2 = 0.61), β-carotene (r2 = 0.22) and β-cryptoxanthin (BCX) (r2 = 0.57). These results demonstrate that Bayesian and MPLS regression of BCX on NIRS data can be used to predict BCX content, the current focus on PVA enhancement, and thus offers opportunities for high-throughput phenotyping at a low cost, especially in the early stages of PVA maize breeding pipeline when many genotypes must be screened. 2022-04-25 2023-01-01T16:18:29Z 2023-01-01T16:18:29Z Journal Article https://hdl.handle.net/10568/126449 en Open Access application/pdf MDPI Rosales, A., Crossa, J., Cuevas, J., Cabrera-Soto, L., Dhliwayo, T., Ndhlela, T., & Palacios-Rojas, N. (2022). Near-Infrared Spectroscopy to Predict Provitamin A Carotenoids Content in Maize. Agronomy, 12(5), 1027. https://doi.org/10.3390/agronomy12051027
spellingShingle biofortification
carotenoids
maize
zea mays
Rosales Nolasco, Aldo
Crossa, José
Cuevas, Jaime
Cabrera-Soto, Luisa María
Dhliwayo, Thanda
Ndhlela, Thokozile
Palacios Rojas, Natalia
Near-infrared spectroscopy to predict provitamin A carotenoids content in maize
title Near-infrared spectroscopy to predict provitamin A carotenoids content in maize
title_full Near-infrared spectroscopy to predict provitamin A carotenoids content in maize
title_fullStr Near-infrared spectroscopy to predict provitamin A carotenoids content in maize
title_full_unstemmed Near-infrared spectroscopy to predict provitamin A carotenoids content in maize
title_short Near-infrared spectroscopy to predict provitamin A carotenoids content in maize
title_sort near infrared spectroscopy to predict provitamin a carotenoids content in maize
topic biofortification
carotenoids
maize
zea mays
url https://hdl.handle.net/10568/126449
work_keys_str_mv AT rosalesnolascoaldo nearinfraredspectroscopytopredictprovitaminacarotenoidscontentinmaize
AT crossajose nearinfraredspectroscopytopredictprovitaminacarotenoidscontentinmaize
AT cuevasjaime nearinfraredspectroscopytopredictprovitaminacarotenoidscontentinmaize
AT cabrerasotoluisamaria nearinfraredspectroscopytopredictprovitaminacarotenoidscontentinmaize
AT dhliwayothanda nearinfraredspectroscopytopredictprovitaminacarotenoidscontentinmaize
AT ndhlelathokozile nearinfraredspectroscopytopredictprovitaminacarotenoidscontentinmaize
AT palaciosrojasnatalia nearinfraredspectroscopytopredictprovitaminacarotenoidscontentinmaize