NIR instruments and prediction methods for rapid access to grain protein content in multiple cereals

Achieving global goals for sustainable nutrition, health, and wellbeing will depend on delivering enhanced diets to humankind. This will require instantaneous access to information on food-source quality at key points of agri-food systems. Although laboratory analysis and benchtop NIR spectrometers...

Descripción completa

Detalles Bibliográficos
Autores principales: Chadalavada, K., Anbazhagan, K., Ndour, A., Choudhary, S., Palmer, W., Flynn, J.R., Mallayee, S., Sharada, Pothu, Prasad, Kodukula V.S.V., Varijakshapanicker, Padmakumar, Jones, Christopher S., Kholová, Jana
Formato: Journal Article
Lenguaje:Inglés
Publicado: MDPI 2022
Materias:
Acceso en línea:https://hdl.handle.net/10568/119626
_version_ 1855539178663575552
author Chadalavada, K.
Anbazhagan, K.
Ndour, A.
Choudhary, S.
Palmer, W.
Flynn, J.R.
Mallayee, S.
Sharada, Pothu
Prasad, Kodukula V.S.V.
Varijakshapanicker, Padmakumar
Jones, Christopher S.
Kholová, Jana
author_browse Anbazhagan, K.
Chadalavada, K.
Choudhary, S.
Flynn, J.R.
Jones, Christopher S.
Kholová, Jana
Mallayee, S.
Ndour, A.
Palmer, W.
Prasad, Kodukula V.S.V.
Sharada, Pothu
Varijakshapanicker, Padmakumar
author_facet Chadalavada, K.
Anbazhagan, K.
Ndour, A.
Choudhary, S.
Palmer, W.
Flynn, J.R.
Mallayee, S.
Sharada, Pothu
Prasad, Kodukula V.S.V.
Varijakshapanicker, Padmakumar
Jones, Christopher S.
Kholová, Jana
author_sort Chadalavada, K.
collection Repository of Agricultural Research Outputs (CGSpace)
description Achieving global goals for sustainable nutrition, health, and wellbeing will depend on delivering enhanced diets to humankind. This will require instantaneous access to information on food-source quality at key points of agri-food systems. Although laboratory analysis and benchtop NIR spectrometers are regularly used to quantify grain quality, these do not suit all end users, for example, stakeholders in decentralized agri-food chains that are typical in emerging economies. Therefore, we explored benchtop and portable NIR instruments, and the methods that might aid these particular end uses. For this purpose, we generated NIR spectra for 328 grain samples from multiple cereals (finger millet, foxtail millet, maize, pearl millet, and sorghum) with a standard benchtop NIR spectrometer (DS2500, FOSS) and a novel portable NIR-based instrument (HL-EVT5, Hone). We explored classical deterministic methods (via winISI, FOSS), novel machine learning (ML)-driven methods (via Hone Create, Hone), and a convolutional neural network (CNN)-based method for building the calibrations to predict grain protein out of the NIR spectra. All of the tested methods enabled us to build relevant calibrations out of both types of spectra (i.e., R2 ≥ 0.90, RMSE ≤ 0.91, RPD ≥ 3.08). Generally, the calibration methods integrating the ML techniques tended to enhance the prediction capacity of the model. We also documented that the prediction of grain protein content based on the NIR spectra generated using the novel portable instrument (HL-EVT5, Hone) was highly relevant for quantitative protein predictions (R2 = 0.91, RMSE = 0.97, RPD = 3.48). Thus, the presented findings lay the foundations for the expanded use of NIR spectroscopy in agricultural research, development, and trade.
format Journal Article
id CGSpace119626
institution CGIAR Consortium
language Inglés
publishDate 2022
publishDateRange 2022
publishDateSort 2022
publisher MDPI
publisherStr MDPI
record_format dspace
spelling CGSpace1196262025-12-08T10:29:22Z NIR instruments and prediction methods for rapid access to grain protein content in multiple cereals Chadalavada, K. Anbazhagan, K. Ndour, A. Choudhary, S. Palmer, W. Flynn, J.R. Mallayee, S. Sharada, Pothu Prasad, Kodukula V.S.V. Varijakshapanicker, Padmakumar Jones, Christopher S. Kholová, Jana cereals protein near-infrared spectroscopy (nirs) prediction methods winisi hone create convolution neural network (cnn) Achieving global goals for sustainable nutrition, health, and wellbeing will depend on delivering enhanced diets to humankind. This will require instantaneous access to information on food-source quality at key points of agri-food systems. Although laboratory analysis and benchtop NIR spectrometers are regularly used to quantify grain quality, these do not suit all end users, for example, stakeholders in decentralized agri-food chains that are typical in emerging economies. Therefore, we explored benchtop and portable NIR instruments, and the methods that might aid these particular end uses. For this purpose, we generated NIR spectra for 328 grain samples from multiple cereals (finger millet, foxtail millet, maize, pearl millet, and sorghum) with a standard benchtop NIR spectrometer (DS2500, FOSS) and a novel portable NIR-based instrument (HL-EVT5, Hone). We explored classical deterministic methods (via winISI, FOSS), novel machine learning (ML)-driven methods (via Hone Create, Hone), and a convolutional neural network (CNN)-based method for building the calibrations to predict grain protein out of the NIR spectra. All of the tested methods enabled us to build relevant calibrations out of both types of spectra (i.e., R2 ≥ 0.90, RMSE ≤ 0.91, RPD ≥ 3.08). Generally, the calibration methods integrating the ML techniques tended to enhance the prediction capacity of the model. We also documented that the prediction of grain protein content based on the NIR spectra generated using the novel portable instrument (HL-EVT5, Hone) was highly relevant for quantitative protein predictions (R2 = 0.91, RMSE = 0.97, RPD = 3.48). Thus, the presented findings lay the foundations for the expanded use of NIR spectroscopy in agricultural research, development, and trade. 2022-05-02 2022-05-23T08:34:28Z 2022-05-23T08:34:28Z Journal Article https://hdl.handle.net/10568/119626 en Open Access MDPI Chadalavada, K., Anbazhagan, K., Ndour, A., Choudhary, S., Palmer, W., Flynn, J.R., Mallayee, S., Pothu, S., Prasad, K.V.S.V., Varijakshapanikar, P., Jones, C.S. and Kholová, J. 2022. NIR instruments and prediction methods for rapid access to grain protein content in multiple cereals. Sensors 22(10):3710.
spellingShingle cereals
protein
near-infrared spectroscopy (nirs)
prediction methods
winisi
hone create
convolution neural network (cnn)
Chadalavada, K.
Anbazhagan, K.
Ndour, A.
Choudhary, S.
Palmer, W.
Flynn, J.R.
Mallayee, S.
Sharada, Pothu
Prasad, Kodukula V.S.V.
Varijakshapanicker, Padmakumar
Jones, Christopher S.
Kholová, Jana
NIR instruments and prediction methods for rapid access to grain protein content in multiple cereals
title NIR instruments and prediction methods for rapid access to grain protein content in multiple cereals
title_full NIR instruments and prediction methods for rapid access to grain protein content in multiple cereals
title_fullStr NIR instruments and prediction methods for rapid access to grain protein content in multiple cereals
title_full_unstemmed NIR instruments and prediction methods for rapid access to grain protein content in multiple cereals
title_short NIR instruments and prediction methods for rapid access to grain protein content in multiple cereals
title_sort nir instruments and prediction methods for rapid access to grain protein content in multiple cereals
topic cereals
protein
near-infrared spectroscopy (nirs)
prediction methods
winisi
hone create
convolution neural network (cnn)
url https://hdl.handle.net/10568/119626
work_keys_str_mv AT chadalavadak nirinstrumentsandpredictionmethodsforrapidaccesstograinproteincontentinmultiplecereals
AT anbazhagank nirinstrumentsandpredictionmethodsforrapidaccesstograinproteincontentinmultiplecereals
AT ndoura nirinstrumentsandpredictionmethodsforrapidaccesstograinproteincontentinmultiplecereals
AT choudharys nirinstrumentsandpredictionmethodsforrapidaccesstograinproteincontentinmultiplecereals
AT palmerw nirinstrumentsandpredictionmethodsforrapidaccesstograinproteincontentinmultiplecereals
AT flynnjr nirinstrumentsandpredictionmethodsforrapidaccesstograinproteincontentinmultiplecereals
AT mallayees nirinstrumentsandpredictionmethodsforrapidaccesstograinproteincontentinmultiplecereals
AT sharadapothu nirinstrumentsandpredictionmethodsforrapidaccesstograinproteincontentinmultiplecereals
AT prasadkodukulavsv nirinstrumentsandpredictionmethodsforrapidaccesstograinproteincontentinmultiplecereals
AT varijakshapanickerpadmakumar nirinstrumentsandpredictionmethodsforrapidaccesstograinproteincontentinmultiplecereals
AT joneschristophers nirinstrumentsandpredictionmethodsforrapidaccesstograinproteincontentinmultiplecereals
AT kholovajana nirinstrumentsandpredictionmethodsforrapidaccesstograinproteincontentinmultiplecereals