Intensive field sampling increases the known extent of carbon-rich Amazonian peatland pole forests

Peatland pole forest is the most carbon-dense ecosystem in Amazonia, but its spatial distribution and species composition are poorly known. To address this knowledge gap, we quantified variation in the floristic composition, peat thickness, and the amount of carbon stored above and below ground of 1...

Descripción completa

Detalles Bibliográficos
Autores principales: Honorio Coronado, E.N., Hastie, A., Reyna, J., Flores, G., Grández, J., Lähteenoja, O., Draper, F.C., Åkesson, C.M., Baker, T.R., Bhomia, R.K., Cole, L.E.S., Dávila, N., Águila, J. del, Águila, M. del, Castillo Torres, D. del, Lawson, I.T., Martín Brañas, M., Mitchard, E.T.A., Monteagudo, A., Phillips, Oliver L., Ramírez, E., Ríos, M., Ríos, S., Rodríguez, L., Roucoux, K.H., Tagle Casapia, X., Vásquez, R., Wheeler, C.E., Montoya, M.
Formato: Journal Article
Lenguaje:Inglés
Publicado: IOP Publishing 2021
Materias:
Acceso en línea:https://hdl.handle.net/10568/114443
_version_ 1855536294510198784
author Honorio Coronado, E.N.
Hastie, A.
Reyna, J.
Flores, G.
Grández, J.
Lähteenoja, O.
Draper, F.C.
Åkesson, C.M.
Baker, T.R.
Bhomia, R.K.
Cole, L.E.S.
Dávila, N.
Águila, J. del
Águila, M. del
Castillo Torres, D. del
Lawson, I.T.
Martín Brañas, M.
Mitchard, E.T.A.
Monteagudo, A.
Phillips, Oliver L.
Ramírez, E.
Ríos, M.
Ríos, S.
Rodríguez, L.
Roucoux, K.H.
Tagle Casapia, X.
Vásquez, R.
Wheeler, C.E.
Montoya, M.
author_browse Baker, T.R.
Bhomia, R.K.
Castillo Torres, D. del
Cole, L.E.S.
Draper, F.C.
Dávila, N.
Flores, G.
Grández, J.
Hastie, A.
Honorio Coronado, E.N.
Lawson, I.T.
Lähteenoja, O.
Martín Brañas, M.
Mitchard, E.T.A.
Monteagudo, A.
Montoya, M.
Phillips, Oliver L.
Ramírez, E.
Reyna, J.
Rodríguez, L.
Roucoux, K.H.
Ríos, M.
Ríos, S.
Tagle Casapia, X.
Vásquez, R.
Wheeler, C.E.
Águila, J. del
Águila, M. del
Åkesson, C.M.
author_facet Honorio Coronado, E.N.
Hastie, A.
Reyna, J.
Flores, G.
Grández, J.
Lähteenoja, O.
Draper, F.C.
Åkesson, C.M.
Baker, T.R.
Bhomia, R.K.
Cole, L.E.S.
Dávila, N.
Águila, J. del
Águila, M. del
Castillo Torres, D. del
Lawson, I.T.
Martín Brañas, M.
Mitchard, E.T.A.
Monteagudo, A.
Phillips, Oliver L.
Ramírez, E.
Ríos, M.
Ríos, S.
Rodríguez, L.
Roucoux, K.H.
Tagle Casapia, X.
Vásquez, R.
Wheeler, C.E.
Montoya, M.
author_sort Honorio Coronado, E.N.
collection Repository of Agricultural Research Outputs (CGSpace)
description Peatland pole forest is the most carbon-dense ecosystem in Amazonia, but its spatial distribution and species composition are poorly known. To address this knowledge gap, we quantified variation in the floristic composition, peat thickness, and the amount of carbon stored above and below ground of 102 forest plots and 53 transects in northern Peruvian Amazonia. This large dataset includes 571 ground reference points of peat thickness measurements across six ecosystem types. These field data were also used to generate a new land-cover classification based on multiple satellite products using a random forest classification. Peatland pole forests are floristically distinctive and dominated by thin-stemmed woody species such as Pachira nitida (Malvaceae), Platycarpum loretense (Rubiaceae), and Hevea guianensis (Euphorbiaceae). In contrast, palm swamps and open peatlands are dominated by Mauritia flexuosa (Arecaceae). Peatland pole forests have high peat thickness (274 ± 22 cm, mean ± 95% CI, n = 184) similar to open peatlands (282 ± 46 cm, n = 46), but greater than palm swamps (161 ± 17 cm, n = 220) and seasonally-flooded forest, terra firme, and white-sand forest where peat is rare or absent. As a result, peatland pole forest has exceptional carbon density (1,133 ± 93 Mg C ha−1). The new sites expand the known distribution of peatland pole forest by 61% within the Pastaza-Marañón Foreland basin, mainly alongside the Tigre river, to cover a total of 7540 km2 in northern Peruvian Amazonia. However, only 15% of the pole forest area is within a protected area, whilst an additional 26% lies within indigenous territories. The current low levels of protection and forest degradation but high threat from road paving projects makes the Tigre river basin a priority for conservation. The long-term conservation of peatland pole forests has the potential to make a large contribution towards international commitments to mitigate climate change.
format Journal Article
id CGSpace114443
institution CGIAR Consortium
language Inglés
publishDate 2021
publishDateRange 2021
publishDateSort 2021
publisher IOP Publishing
publisherStr IOP Publishing
record_format dspace
spelling CGSpace1144432025-02-19T13:42:45Z Intensive field sampling increases the known extent of carbon-rich Amazonian peatland pole forests Honorio Coronado, E.N. Hastie, A. Reyna, J. Flores, G. Grández, J. Lähteenoja, O. Draper, F.C. Åkesson, C.M. Baker, T.R. Bhomia, R.K. Cole, L.E.S. Dávila, N. Águila, J. del Águila, M. del Castillo Torres, D. del Lawson, I.T. Martín Brañas, M. Mitchard, E.T.A. Monteagudo, A. Phillips, Oliver L. Ramírez, E. Ríos, M. Ríos, S. Rodríguez, L. Roucoux, K.H. Tagle Casapia, X. Vásquez, R. Wheeler, C.E. Montoya, M. spatial distribution species composition carbon sinks remote sensing Peatland pole forest is the most carbon-dense ecosystem in Amazonia, but its spatial distribution and species composition are poorly known. To address this knowledge gap, we quantified variation in the floristic composition, peat thickness, and the amount of carbon stored above and below ground of 102 forest plots and 53 transects in northern Peruvian Amazonia. This large dataset includes 571 ground reference points of peat thickness measurements across six ecosystem types. These field data were also used to generate a new land-cover classification based on multiple satellite products using a random forest classification. Peatland pole forests are floristically distinctive and dominated by thin-stemmed woody species such as Pachira nitida (Malvaceae), Platycarpum loretense (Rubiaceae), and Hevea guianensis (Euphorbiaceae). In contrast, palm swamps and open peatlands are dominated by Mauritia flexuosa (Arecaceae). Peatland pole forests have high peat thickness (274 ± 22 cm, mean ± 95% CI, n = 184) similar to open peatlands (282 ± 46 cm, n = 46), but greater than palm swamps (161 ± 17 cm, n = 220) and seasonally-flooded forest, terra firme, and white-sand forest where peat is rare or absent. As a result, peatland pole forest has exceptional carbon density (1,133 ± 93 Mg C ha−1). The new sites expand the known distribution of peatland pole forest by 61% within the Pastaza-Marañón Foreland basin, mainly alongside the Tigre river, to cover a total of 7540 km2 in northern Peruvian Amazonia. However, only 15% of the pole forest area is within a protected area, whilst an additional 26% lies within indigenous territories. The current low levels of protection and forest degradation but high threat from road paving projects makes the Tigre river basin a priority for conservation. The long-term conservation of peatland pole forests has the potential to make a large contribution towards international commitments to mitigate climate change. 2021-07-01 2021-07-29T03:25:10Z 2021-07-29T03:25:10Z Journal Article https://hdl.handle.net/10568/114443 en Open Access IOP Publishing Honorio Coronado, E.N., Hastie, A., Reyna, J., Flores, G., Grández, J., Lähteenoja, O., Draper, F.C., Åkesson, C.M., Baker, T.R., Bhomia, R.K., Cole, L.E.S., Dávila, N., Del Águila, J., Del Águila, M., Del Castillo Torres, D., Lawson, I.T., Martín Brañas, M., Mitchard, E.T.A., Monteagudo, A., Phillips, O.L., Ramírez, E., Ríos, M., Ríos, S., Rodriguez, L., Roucoux, K.H., Tagle Casapia, X., Vasquez, R., Wheeler, C.E. and Montoya, M. 2021. Intensive field sampling increases the known extent of carbon-rich Amazonian peatland pole forests. Environmental Research Letters 16(7): 074048. https://doi.org/10.1088/1748-9326/ac0e65
spellingShingle spatial distribution
species composition
carbon sinks
remote sensing
Honorio Coronado, E.N.
Hastie, A.
Reyna, J.
Flores, G.
Grández, J.
Lähteenoja, O.
Draper, F.C.
Åkesson, C.M.
Baker, T.R.
Bhomia, R.K.
Cole, L.E.S.
Dávila, N.
Águila, J. del
Águila, M. del
Castillo Torres, D. del
Lawson, I.T.
Martín Brañas, M.
Mitchard, E.T.A.
Monteagudo, A.
Phillips, Oliver L.
Ramírez, E.
Ríos, M.
Ríos, S.
Rodríguez, L.
Roucoux, K.H.
Tagle Casapia, X.
Vásquez, R.
Wheeler, C.E.
Montoya, M.
Intensive field sampling increases the known extent of carbon-rich Amazonian peatland pole forests
title Intensive field sampling increases the known extent of carbon-rich Amazonian peatland pole forests
title_full Intensive field sampling increases the known extent of carbon-rich Amazonian peatland pole forests
title_fullStr Intensive field sampling increases the known extent of carbon-rich Amazonian peatland pole forests
title_full_unstemmed Intensive field sampling increases the known extent of carbon-rich Amazonian peatland pole forests
title_short Intensive field sampling increases the known extent of carbon-rich Amazonian peatland pole forests
title_sort intensive field sampling increases the known extent of carbon rich amazonian peatland pole forests
topic spatial distribution
species composition
carbon sinks
remote sensing
url https://hdl.handle.net/10568/114443
work_keys_str_mv AT honoriocoronadoen intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests
AT hastiea intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests
AT reynaj intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests
AT floresg intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests
AT grandezj intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests
AT lahteenojao intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests
AT draperfc intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests
AT akessoncm intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests
AT bakertr intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests
AT bhomiark intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests
AT coleles intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests
AT davilan intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests
AT aguilajdel intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests
AT aguilamdel intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests
AT castillotorresddel intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests
AT lawsonit intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests
AT martinbranasm intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests
AT mitchardeta intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests
AT monteagudoa intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests
AT phillipsoliverl intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests
AT ramireze intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests
AT riosm intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests
AT rioss intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests
AT rodriguezl intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests
AT roucouxkh intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests
AT taglecasapiax intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests
AT vasquezr intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests
AT wheelerce intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests
AT montoyam intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests