Intensive field sampling increases the known extent of carbon-rich Amazonian peatland pole forests
Peatland pole forest is the most carbon-dense ecosystem in Amazonia, but its spatial distribution and species composition are poorly known. To address this knowledge gap, we quantified variation in the floristic composition, peat thickness, and the amount of carbon stored above and below ground of 1...
| Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
|---|---|
| Formato: | Journal Article |
| Lenguaje: | Inglés |
| Publicado: |
IOP Publishing
2021
|
| Materias: | |
| Acceso en línea: | https://hdl.handle.net/10568/114443 |
| _version_ | 1855536294510198784 |
|---|---|
| author | Honorio Coronado, E.N. Hastie, A. Reyna, J. Flores, G. Grández, J. Lähteenoja, O. Draper, F.C. Åkesson, C.M. Baker, T.R. Bhomia, R.K. Cole, L.E.S. Dávila, N. Águila, J. del Águila, M. del Castillo Torres, D. del Lawson, I.T. Martín Brañas, M. Mitchard, E.T.A. Monteagudo, A. Phillips, Oliver L. Ramírez, E. Ríos, M. Ríos, S. Rodríguez, L. Roucoux, K.H. Tagle Casapia, X. Vásquez, R. Wheeler, C.E. Montoya, M. |
| author_browse | Baker, T.R. Bhomia, R.K. Castillo Torres, D. del Cole, L.E.S. Draper, F.C. Dávila, N. Flores, G. Grández, J. Hastie, A. Honorio Coronado, E.N. Lawson, I.T. Lähteenoja, O. Martín Brañas, M. Mitchard, E.T.A. Monteagudo, A. Montoya, M. Phillips, Oliver L. Ramírez, E. Reyna, J. Rodríguez, L. Roucoux, K.H. Ríos, M. Ríos, S. Tagle Casapia, X. Vásquez, R. Wheeler, C.E. Águila, J. del Águila, M. del Åkesson, C.M. |
| author_facet | Honorio Coronado, E.N. Hastie, A. Reyna, J. Flores, G. Grández, J. Lähteenoja, O. Draper, F.C. Åkesson, C.M. Baker, T.R. Bhomia, R.K. Cole, L.E.S. Dávila, N. Águila, J. del Águila, M. del Castillo Torres, D. del Lawson, I.T. Martín Brañas, M. Mitchard, E.T.A. Monteagudo, A. Phillips, Oliver L. Ramírez, E. Ríos, M. Ríos, S. Rodríguez, L. Roucoux, K.H. Tagle Casapia, X. Vásquez, R. Wheeler, C.E. Montoya, M. |
| author_sort | Honorio Coronado, E.N. |
| collection | Repository of Agricultural Research Outputs (CGSpace) |
| description | Peatland pole forest is the most carbon-dense ecosystem in Amazonia, but its spatial distribution and species composition are poorly known. To address this knowledge gap, we quantified variation in the floristic composition, peat thickness, and the amount of carbon stored above and below ground of 102 forest plots and 53 transects in northern Peruvian Amazonia. This large dataset includes 571 ground reference points of peat thickness measurements across six ecosystem types. These field data were also used to generate a new land-cover classification based on multiple satellite products using a random forest classification. Peatland pole forests are floristically distinctive and dominated by thin-stemmed woody species such as Pachira nitida (Malvaceae), Platycarpum loretense (Rubiaceae), and Hevea guianensis (Euphorbiaceae). In contrast, palm swamps and open peatlands are dominated by Mauritia flexuosa (Arecaceae). Peatland pole forests have high peat thickness (274 ± 22 cm, mean ± 95% CI, n = 184) similar to open peatlands (282 ± 46 cm, n = 46), but greater than palm swamps (161 ± 17 cm, n = 220) and seasonally-flooded forest, terra firme, and white-sand forest where peat is rare or absent. As a result, peatland pole forest has exceptional carbon density (1,133 ± 93 Mg C ha−1). The new sites expand the known distribution of peatland pole forest by 61% within the Pastaza-Marañón Foreland basin, mainly alongside the Tigre river, to cover a total of 7540 km2 in northern Peruvian Amazonia. However, only 15% of the pole forest area is within a protected area, whilst an additional 26% lies within indigenous territories. The current low levels of protection and forest degradation but high threat from road paving projects makes the Tigre river basin a priority for conservation. The long-term conservation of peatland pole forests has the potential to make a large contribution towards international commitments to mitigate climate change. |
| format | Journal Article |
| id | CGSpace114443 |
| institution | CGIAR Consortium |
| language | Inglés |
| publishDate | 2021 |
| publishDateRange | 2021 |
| publishDateSort | 2021 |
| publisher | IOP Publishing |
| publisherStr | IOP Publishing |
| record_format | dspace |
| spelling | CGSpace1144432025-02-19T13:42:45Z Intensive field sampling increases the known extent of carbon-rich Amazonian peatland pole forests Honorio Coronado, E.N. Hastie, A. Reyna, J. Flores, G. Grández, J. Lähteenoja, O. Draper, F.C. Åkesson, C.M. Baker, T.R. Bhomia, R.K. Cole, L.E.S. Dávila, N. Águila, J. del Águila, M. del Castillo Torres, D. del Lawson, I.T. Martín Brañas, M. Mitchard, E.T.A. Monteagudo, A. Phillips, Oliver L. Ramírez, E. Ríos, M. Ríos, S. Rodríguez, L. Roucoux, K.H. Tagle Casapia, X. Vásquez, R. Wheeler, C.E. Montoya, M. spatial distribution species composition carbon sinks remote sensing Peatland pole forest is the most carbon-dense ecosystem in Amazonia, but its spatial distribution and species composition are poorly known. To address this knowledge gap, we quantified variation in the floristic composition, peat thickness, and the amount of carbon stored above and below ground of 102 forest plots and 53 transects in northern Peruvian Amazonia. This large dataset includes 571 ground reference points of peat thickness measurements across six ecosystem types. These field data were also used to generate a new land-cover classification based on multiple satellite products using a random forest classification. Peatland pole forests are floristically distinctive and dominated by thin-stemmed woody species such as Pachira nitida (Malvaceae), Platycarpum loretense (Rubiaceae), and Hevea guianensis (Euphorbiaceae). In contrast, palm swamps and open peatlands are dominated by Mauritia flexuosa (Arecaceae). Peatland pole forests have high peat thickness (274 ± 22 cm, mean ± 95% CI, n = 184) similar to open peatlands (282 ± 46 cm, n = 46), but greater than palm swamps (161 ± 17 cm, n = 220) and seasonally-flooded forest, terra firme, and white-sand forest where peat is rare or absent. As a result, peatland pole forest has exceptional carbon density (1,133 ± 93 Mg C ha−1). The new sites expand the known distribution of peatland pole forest by 61% within the Pastaza-Marañón Foreland basin, mainly alongside the Tigre river, to cover a total of 7540 km2 in northern Peruvian Amazonia. However, only 15% of the pole forest area is within a protected area, whilst an additional 26% lies within indigenous territories. The current low levels of protection and forest degradation but high threat from road paving projects makes the Tigre river basin a priority for conservation. The long-term conservation of peatland pole forests has the potential to make a large contribution towards international commitments to mitigate climate change. 2021-07-01 2021-07-29T03:25:10Z 2021-07-29T03:25:10Z Journal Article https://hdl.handle.net/10568/114443 en Open Access IOP Publishing Honorio Coronado, E.N., Hastie, A., Reyna, J., Flores, G., Grández, J., Lähteenoja, O., Draper, F.C., Åkesson, C.M., Baker, T.R., Bhomia, R.K., Cole, L.E.S., Dávila, N., Del Águila, J., Del Águila, M., Del Castillo Torres, D., Lawson, I.T., Martín Brañas, M., Mitchard, E.T.A., Monteagudo, A., Phillips, O.L., Ramírez, E., Ríos, M., Ríos, S., Rodriguez, L., Roucoux, K.H., Tagle Casapia, X., Vasquez, R., Wheeler, C.E. and Montoya, M. 2021. Intensive field sampling increases the known extent of carbon-rich Amazonian peatland pole forests. Environmental Research Letters 16(7): 074048. https://doi.org/10.1088/1748-9326/ac0e65 |
| spellingShingle | spatial distribution species composition carbon sinks remote sensing Honorio Coronado, E.N. Hastie, A. Reyna, J. Flores, G. Grández, J. Lähteenoja, O. Draper, F.C. Åkesson, C.M. Baker, T.R. Bhomia, R.K. Cole, L.E.S. Dávila, N. Águila, J. del Águila, M. del Castillo Torres, D. del Lawson, I.T. Martín Brañas, M. Mitchard, E.T.A. Monteagudo, A. Phillips, Oliver L. Ramírez, E. Ríos, M. Ríos, S. Rodríguez, L. Roucoux, K.H. Tagle Casapia, X. Vásquez, R. Wheeler, C.E. Montoya, M. Intensive field sampling increases the known extent of carbon-rich Amazonian peatland pole forests |
| title | Intensive field sampling increases the known extent of carbon-rich Amazonian peatland pole forests |
| title_full | Intensive field sampling increases the known extent of carbon-rich Amazonian peatland pole forests |
| title_fullStr | Intensive field sampling increases the known extent of carbon-rich Amazonian peatland pole forests |
| title_full_unstemmed | Intensive field sampling increases the known extent of carbon-rich Amazonian peatland pole forests |
| title_short | Intensive field sampling increases the known extent of carbon-rich Amazonian peatland pole forests |
| title_sort | intensive field sampling increases the known extent of carbon rich amazonian peatland pole forests |
| topic | spatial distribution species composition carbon sinks remote sensing |
| url | https://hdl.handle.net/10568/114443 |
| work_keys_str_mv | AT honoriocoronadoen intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests AT hastiea intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests AT reynaj intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests AT floresg intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests AT grandezj intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests AT lahteenojao intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests AT draperfc intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests AT akessoncm intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests AT bakertr intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests AT bhomiark intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests AT coleles intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests AT davilan intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests AT aguilajdel intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests AT aguilamdel intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests AT castillotorresddel intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests AT lawsonit intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests AT martinbranasm intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests AT mitchardeta intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests AT monteagudoa intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests AT phillipsoliverl intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests AT ramireze intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests AT riosm intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests AT rioss intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests AT rodriguezl intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests AT roucouxkh intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests AT taglecasapiax intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests AT vasquezr intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests AT wheelerce intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests AT montoyam intensivefieldsamplingincreasestheknownextentofcarbonrichamazonianpeatlandpoleforests |