Terra-i + Using machine learning to manage impacts of coffee production in Ocotepeque
Description of a proposed servce
| Autor principal: | |
|---|---|
| Formato: | Ponencia |
| Lenguaje: | Inglés |
| Publicado: |
CGIAR Research Program on Climate Change, Agriculture and Food Security
2020
|
| Materias: | |
| Acceso en línea: | https://hdl.handle.net/10568/111379 |
Ejemplares similares: Terra-i + Using machine learning to manage impacts of coffee production in Ocotepeque
- Terra-i+ Using machine learning to manage impacts of coffee production in Ocotepeque, Honduras
- Digital soil mapping using machine learning model for Kapiti in Kenya
- Gap-filling eddy covariance methane fluxes: Comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands
- Predicting climate smart agriculture (CSA) practices using machine learning: A prime exploratory survey
- MusaDeepMosaic: Development of a machine learning genomic mosaic classifier tool.
- Explainable machine learning driven nutrient recommendation for maize production in Malawi