Sammankoppling av fjärrvärmenäten i Nyköping och Oxelösund : miljö- och systemkonsekvenser

District heating covers most of the residential areas and industries in the two neighbouring Swedish municipalities Nyköping and Oxelösund. In Nyköping, Vattenfall AB Värme produces heat in a bio-fuelled CHP plant. In Oxelösund, waste heat and use of waste gases from the steel production at SSAB Oxe...

Descripción completa

Detalles Bibliográficos
Autor principal: Lindow, Veronica
Formato: H3
Lenguaje:sueco
Inglés
Publicado: SLU/Dept. of Energy and Technology 2009
Materias:
Descripción
Sumario:District heating covers most of the residential areas and industries in the two neighbouring Swedish municipalities Nyköping and Oxelösund. In Nyköping, Vattenfall AB Värme produces heat in a bio-fuelled CHP plant. In Oxelösund, waste heat and use of waste gases from the steel production at SSAB Oxelösund is the basis in the district heating system. This report examines the environmental consequences of a connection between the two district heating systems. A broad system approach is used and the focus is on environmental effects in the system. A system analysis has been performed on the result of simulations of different heat and electricity production alternatives. The alternatives simulated were one where Vattenfall Nyköping covers the base load in the joint district heating system and two where the power plant at SSAB Oxelösund supplies the heat base load. The conclusion in this report is that the consequences of connecting the two district heating systems can be both positive and negative, depending on system boundaries and on the environmental focus. An efficient use of resources can be achieved by letting SSAB Oxelösund supply the base load of heat in the system. Such a solution will lead to a decrease in electricity production in Nyköping and Oxelösund. This might not be desirable since a large part of this production is renewable. With a focus on renewable electricity production the first alternative, with base load production at Vattenfall Nyköping, would be the best alternative.