Biochar as soil amendment in flow-through planters - for increased treatment of zinc roof runoff

In times of increased flooding, enhanced by climate change, polluted stormwater poses an increased threat to the environment through contaminated water entering waterways. Bioretention utilizes natural processes in soil and vegetation to treat pollutants and combat this threat. Biochar produced thro...

Descripción completa

Detalles Bibliográficos
Autor principal: Wiström, Froste
Formato: M2
Lenguaje:Inglés
sueco
Publicado: SLU/Dept. of Landscape Architecture, Planning and Management (from 130101) 2014
Materias:
_version_ 1855571063547625472
author Wiström, Froste
author_browse Wiström, Froste
author_facet Wiström, Froste
author_sort Wiström, Froste
collection Epsilon Archive for Student Projects
description In times of increased flooding, enhanced by climate change, polluted stormwater poses an increased threat to the environment through contaminated water entering waterways. Bioretention utilizes natural processes in soil and vegetation to treat pollutants and combat this threat. Biochar produced through pyrolysis, has a high cation exchange capacity (CEC) and could therefore increase treatment in bioretention systems. This research applies a literature review, interview, and a model to explore the benefits and disadvantages of biochar in order to specify a soil-mix through an understanding of the production process and preferred application rate. High purification through CEC, increased water holding capacity, and carbon sequestration being the benefits discussed. Biochar application can however, cause clogging due to weathering, which decreases the performance of bioretention systems. A scenario consisting of a zinc roof discharging runoff into a flow-through planter is set in Alnarp, Sweden. The model presents pollution load and treatment capabilities of substrates to then design four soil-mixes to allow maximum hydraulic conductivity, maximized treatment through CEC, stability over time, and enhanced plant habitat. The theoretically optimal soil-mix consists of 50% sand, 30% biochar, 10% loam, and 10% compost, accommodating these factors and providing the best solution for a substrate in a flow-through planter for the removal of zinc pollution from stormwater.
format M2
id RepoSLU6748
institution Swedish University of Agricultural Sciences
language Inglés
swe
publishDate 2014
publishDateSort 2014
publisher SLU/Dept. of Landscape Architecture, Planning and Management (from 130101)
publisherStr SLU/Dept. of Landscape Architecture, Planning and Management (from 130101)
record_format eprints
spelling RepoSLU67482014-05-12T13:13:50Z Biochar as soil amendment in flow-through planters - for increased treatment of zinc roof runoff Biokol som jordförbättring i biofilter - för ökad rening av zinkföroreningar från tak Wiström, Froste biochar pyrolysis stormwater bioretention flow-through planter zinc roof cation exchange capacity treatment water holding capacity carbon sequestration In times of increased flooding, enhanced by climate change, polluted stormwater poses an increased threat to the environment through contaminated water entering waterways. Bioretention utilizes natural processes in soil and vegetation to treat pollutants and combat this threat. Biochar produced through pyrolysis, has a high cation exchange capacity (CEC) and could therefore increase treatment in bioretention systems. This research applies a literature review, interview, and a model to explore the benefits and disadvantages of biochar in order to specify a soil-mix through an understanding of the production process and preferred application rate. High purification through CEC, increased water holding capacity, and carbon sequestration being the benefits discussed. Biochar application can however, cause clogging due to weathering, which decreases the performance of bioretention systems. A scenario consisting of a zinc roof discharging runoff into a flow-through planter is set in Alnarp, Sweden. The model presents pollution load and treatment capabilities of substrates to then design four soil-mixes to allow maximum hydraulic conductivity, maximized treatment through CEC, stability over time, and enhanced plant habitat. The theoretically optimal soil-mix consists of 50% sand, 30% biochar, 10% loam, and 10% compost, accommodating these factors and providing the best solution for a substrate in a flow-through planter for the removal of zinc pollution from stormwater. Klimatförändringen ställer nya krav på dagvattenhantering då den medför ökad nederbörd med föroreningar i sjöar och hav som följd. Med bioretention går det att dra nytta av naturliga processer i jord och vegetation för att rena dagvatten och övervinna problemen med föroreningarna. Biokol producerat genom pyrolys har hög katjonutbyteskapacitet (CEC) och skulle därför kunna öka reningen i biofilter. Den här studien använder en litteraturstudie, intervju och en modell som metod för att utforska möjligheter, fördelar och nackdelar med implementeringen av biokol i dagvattensammanhang. Dessutom ökar den förståelsen för olika produktions-metoders påverkan på produkten och effekten av olika mängder biokol i jord. Fördelarna är hög CEC, ökad vattenhållande förmåga, förmågan att binda atmosfäriskt kol i marken, även kallad kolsänka. Genom vittring kan biokol däremot skapa problem i form av igensättning i biofilter. Ett teoretiskt scenario är skapat med ett zinktak kopplat till ett biofilter placerat i Alnarp, Sverige. Modellen presenterar föroreningshalter från taket och reningsförmågan hos olika substrat; den föreslår sedan fyra förslag på jordblandningar. Detta för att maximera den hydrauliska konduktiviteten, maximera reningen genom CEC, öka systemets livslängd samt för att skapa en förbättrad ståndort. Med dessa parametrar i beaktning och om uppgiften är att rena zinkföroreningar i ett biofilter, består den teoretiskt optimala jord-sammansättningen av: 50% sand, 30% biokol, 10% sandig lerjord och 10% kompost. SLU/Dept. of Landscape Architecture, Planning and Management (from 130101) 2014 M2 eng swe https://stud.epsilon.slu.se/6748/
spellingShingle biochar
pyrolysis
stormwater
bioretention
flow-through planter
zinc roof
cation exchange capacity
treatment
water holding capacity
carbon sequestration
Wiström, Froste
Biochar as soil amendment in flow-through planters - for increased treatment of zinc roof runoff
title Biochar as soil amendment in flow-through planters - for increased treatment of zinc roof runoff
title_full Biochar as soil amendment in flow-through planters - for increased treatment of zinc roof runoff
title_fullStr Biochar as soil amendment in flow-through planters - for increased treatment of zinc roof runoff
title_full_unstemmed Biochar as soil amendment in flow-through planters - for increased treatment of zinc roof runoff
title_short Biochar as soil amendment in flow-through planters - for increased treatment of zinc roof runoff
title_sort biochar as soil amendment in flow-through planters - for increased treatment of zinc roof runoff
topic biochar
pyrolysis
stormwater
bioretention
flow-through planter
zinc roof
cation exchange capacity
treatment
water holding capacity
carbon sequestration