Evaluation of transgenic lines of field pepperweed (Lepidium campestre L.)

The worldwide industrial demand of energy, often in form of fossil fuel, is continuously growing and at the same time these resources are coming to an end (Hamamre, 2013). The interest and focus in renewable sources are then more important than ever and plants are suggested to be a good alternative...

Descripción completa

Detalles Bibliográficos
Autor principal: Holst, Rikard
Formato: H2
Lenguaje:Inglés
sueco
Publicado: SLU/Dept. of Plant Breeding (from 130101) 2013
Materias:
_version_ 1855570996660011008
author Holst, Rikard
author_browse Holst, Rikard
author_facet Holst, Rikard
author_sort Holst, Rikard
collection Epsilon Archive for Student Projects
description The worldwide industrial demand of energy, often in form of fossil fuel, is continuously growing and at the same time these resources are coming to an end (Hamamre, 2013). The interest and focus in renewable sources are then more important than ever and plants are suggested to be a good alternative for production of raw material for industrial purposes (Nilsson et al., 1998). But the world is also facing an increasing world population which also increase the nutritional needs, plants therefore need to be suitable for both industrial and nutritional purposes. To achieve this, common plants need to be improved but it also need new potential crops to be developed and introduced (Carlsson et al., 2009). Modern technology like gene engineering is an important tool to achieve these challenges (Carlsson et al., 2011). This work focused on analyzes and evaluation of different transgenic lines of field pepperweed (Lepidium campestre L.). Field pepperweed has traditionally been seen as a weed in the agriculture sector but is in these days less common and most frequent along railway stations and ruderal areas (Lagerberg, 1958). The field pepperweed were bred with 3 different goals to (i) increase the rather low seed oil content, which is around 20% (Nilsson et al., 1998), (ii) reduce the pod shatter sensitivity and (iii) optimize the fatty acid profile of the seed oil. Different transgenic lines were evaluated through DNA analysis (PCR, Southern blot) and oil analysis. The DNA analysis showed that the new traits could both be detected through PCR and Southern blot. The oil analysis also showed that the oil content could be increased through overexpression of both WRI1 and hemoglobin like genes with up to 25 % compared to the non-transgenic lines which resulted in a total oil content of over 27 % (27.34 %). To optimize the breeding procedure different tests were arranged due to easier distinguish transgenic plants from non-transgenic plants through both finding suitable kanamycin concentration and through detection with red fluorescent protein.
format H2
id RepoSLU6360
institution Swedish University of Agricultural Sciences
language Inglés
swe
publishDate 2013
publishDateSort 2013
publisher SLU/Dept. of Plant Breeding (from 130101)
publisherStr SLU/Dept. of Plant Breeding (from 130101)
record_format eprints
spelling RepoSLU63602014-01-24T13:52:40Z Evaluation of transgenic lines of field pepperweed (Lepidium campestre L.) Utvärdering av transgena linjer av fältkrassing (Lepidium campestre L.) Holst, Rikard field pepperweed transgenic WRI1 oil content PCR Southern blot vernalization The worldwide industrial demand of energy, often in form of fossil fuel, is continuously growing and at the same time these resources are coming to an end (Hamamre, 2013). The interest and focus in renewable sources are then more important than ever and plants are suggested to be a good alternative for production of raw material for industrial purposes (Nilsson et al., 1998). But the world is also facing an increasing world population which also increase the nutritional needs, plants therefore need to be suitable for both industrial and nutritional purposes. To achieve this, common plants need to be improved but it also need new potential crops to be developed and introduced (Carlsson et al., 2009). Modern technology like gene engineering is an important tool to achieve these challenges (Carlsson et al., 2011). This work focused on analyzes and evaluation of different transgenic lines of field pepperweed (Lepidium campestre L.). Field pepperweed has traditionally been seen as a weed in the agriculture sector but is in these days less common and most frequent along railway stations and ruderal areas (Lagerberg, 1958). The field pepperweed were bred with 3 different goals to (i) increase the rather low seed oil content, which is around 20% (Nilsson et al., 1998), (ii) reduce the pod shatter sensitivity and (iii) optimize the fatty acid profile of the seed oil. Different transgenic lines were evaluated through DNA analysis (PCR, Southern blot) and oil analysis. The DNA analysis showed that the new traits could both be detected through PCR and Southern blot. The oil analysis also showed that the oil content could be increased through overexpression of both WRI1 and hemoglobin like genes with up to 25 % compared to the non-transgenic lines which resulted in a total oil content of over 27 % (27.34 %). To optimize the breeding procedure different tests were arranged due to easier distinguish transgenic plants from non-transgenic plants through both finding suitable kanamycin concentration and through detection with red fluorescent protein. Det världsvida industriella behovet av energi och oftast i form av fossila bränslen ökar stadigt samtidigt som de begränsande resurserna börjar sina (Hamamre, 2013). Intresse och fokus på förnyelsebara alternativ är därför viktigare än tidigare och växter anses vara bra alternativ för produktion av råmaterial för industriella ändamål (Nilsson et al., 1998). Men världen möter också en växande population vilket också ökar efterfrågan på föda. Växter måste därför vara anpassade för både industriella och näringsändamål. För att uppnå detta måste vanliga grödor förbättras samt nya grödor utvecklas introduceras (Carlsson et al., 2009). Modern teknologi som genmodifiering är viktiga redskap för att klara dessa utmaningar (Carlsson et al., 2011). Detta arbete fokuserade på att analysera och utvärdera olika transgena linjer av fältkrassing (Lepidium campestre L.). Fältkrassing har traditionellt setts som ogräs i jordbrukssammanhang men är nuförtiden mer sällsynt och förekommer vanligen vid järnvägsstationer och ruderatmarker. Fältkrassing förädlades med tre olika mål (i) öka den relativt låga oljehalten, som är ungefär 20 % (Nilsson et al., 1998), (ii) reducera skördeförluster via dråsning samt (iii) optimera fettsyrasammansättningen i fröoljan. Olika transgena linjer var sedan utvärderade genom DNAanalyser (PCR, southern blot) samt oljeanalyser. DNA-analyserna visade att de nya egenskaperna kunde både kunde upptäckas med hjälp av PCR och southern blot. Oljeanalyserna visade även att oljehalten kunde ökas både genom överuttryck av WRI1 samt hemoglobinliknande gener med upp till 25 % jämfört med icke-transgena linjer vilket resulterade i en total oljehalt på över 27 % (27,34 %). För att optimera förädlingsdelarna utfördes även olika test för att utskilja transgena plantor från icke-transgena plantor genom att hitta lämplig kanamycin-koncentration samt urskiljning med hjälp av röd fluorescens protein. SLU/Dept. of Plant Breeding (from 130101) 2013 H2 eng swe https://stud.epsilon.slu.se/6360/
spellingShingle field pepperweed
transgenic
WRI1
oil content
PCR
Southern blot
vernalization
Holst, Rikard
Evaluation of transgenic lines of field pepperweed (Lepidium campestre L.)
title Evaluation of transgenic lines of field pepperweed (Lepidium campestre L.)
title_full Evaluation of transgenic lines of field pepperweed (Lepidium campestre L.)
title_fullStr Evaluation of transgenic lines of field pepperweed (Lepidium campestre L.)
title_full_unstemmed Evaluation of transgenic lines of field pepperweed (Lepidium campestre L.)
title_short Evaluation of transgenic lines of field pepperweed (Lepidium campestre L.)
title_sort evaluation of transgenic lines of field pepperweed (lepidium campestre l.)
topic field pepperweed
transgenic
WRI1
oil content
PCR
Southern blot
vernalization