Compost and vermicompost improve symbiotic nitrogen fixation, physiology and yield of the Rhizobium-legume symbiosis: A systematic review
Compost and vermicompost are valuable sources of organic matter, nutrients and beneficial microorganisms for plants. Both improve the physical and chemical properties of soil and stimulate its biological processes, such as beneficial interactions between soil microorganisms and plants. One examp...
| Autores principales: | , , , |
|---|---|
| Formato: | Artículo |
| Lenguaje: | Inglés |
| Publicado: |
Elsevier B.V.
2025
|
| Materias: | |
| Acceso en línea: | https://www.sciencedirect.com/science/article/pii/S0929139325001891?via%3Dihub https://hdl.handle.net/20.500.12324/41334 https://doi.org/10.1016/j.apsoil.2025.106051 |
| _version_ | 1855494158468251648 |
|---|---|
| author | Amaya Gomez, Carol V. Florez Martínez, Diego H. Cayuela, María Luz Tortosa, Germán |
| author_browse | Amaya Gomez, Carol V. Cayuela, María Luz Florez Martínez, Diego H. Tortosa, Germán |
| author_facet | Amaya Gomez, Carol V. Florez Martínez, Diego H. Cayuela, María Luz Tortosa, Germán |
| author_sort | Amaya Gomez, Carol V. |
| collection | Repositorio AGROSAVIA |
| description | Compost and vermicompost are valuable sources of organic matter, nutrients and beneficial microorganisms for
plants. Both improve the physical and chemical properties of soil and stimulate its biological processes, such as
beneficial interactions between soil microorganisms and plants. One example is the symbiosis between legumes
and rhizobia. A systematic review of the existing scientific literature was conducted to assess the effects of
compost and vermicompost on symbiotic nitrogen fixation. The collected information and data were subse quently used for scientometrics and meta-analysis. Variance, effect size and percentage change from a control
without compost or vermicompost were analysed. The scientometrics analysis revealed promising research areas
including, the study of the effects of compost and vermicompost combined with rhizobia on plant physiology,
nitrogen fixation, soil quality, economic benefits, microbial diversity and salinity stress. The combined use of
compost and biochar emerged as the most recent research trend. Other relevant topics included the economic
benefits, and environmental sustainability impacts of compost and legumes for improving soil quality and ni trogen availability. The meta-analysis showed that compost application, on average, increased nodule number by
66 %, nodule fresh weight by 52 %, plant biomass by 48 %, plant height by 21 % and yield by 20 %. Vermi compost application led to greater values in these parameters. Some scientific gaps have been addressed as: i) the
effectiveness of compost at inducing nodule formation when inoculated with microbial inoculants, considering
the legume species and the edaphoclimatic conditions of the experiment, ii) the effects of biochar and compost on
nodulation improvement in legumes, and iii) the effect of the chemical and biological characteristics of compost
(or vermicompost), especially nitrogen content or raw nitrogen-fixing bacteria present in compost in the
Rhizobium-legume symbiosis. All these results confirm that using compost or vermicompost in the cultivation of
legume crops is a valuable approach to increase soil fertility, crop productivity and agricultural sustainability. |
| format | Artículo |
| id | RepoAGROSAVIA41334 |
| institution | Corporación Colombiana de Investigación Agropecuaria |
| language | Inglés |
| publishDate | 2025 |
| publishDateRange | 2025 |
| publishDateSort | 2025 |
| publisher | Elsevier B.V. |
| publisherStr | Elsevier B.V. |
| record_format | dspace |
| spelling | RepoAGROSAVIA413342025-11-20T14:12:22Z Compost and vermicompost improve symbiotic nitrogen fixation, physiology and yield of the Rhizobium-legume symbiosis: A systematic review Compost and vermicompost improve symbiotic nitrogen fixation, physiology and yield of the Rhizobium-legume symbiosis: A systematic review Amaya Gomez, Carol V. Florez Martínez, Diego H. Cayuela, María Luz Tortosa, Germán Compost Endosymbionts Inoculants Meta-analysis Nodules Scientometric analysis Vermicompost Transversal Compost and vermicompost are valuable sources of organic matter, nutrients and beneficial microorganisms for plants. Both improve the physical and chemical properties of soil and stimulate its biological processes, such as beneficial interactions between soil microorganisms and plants. One example is the symbiosis between legumes and rhizobia. A systematic review of the existing scientific literature was conducted to assess the effects of compost and vermicompost on symbiotic nitrogen fixation. The collected information and data were subse quently used for scientometrics and meta-analysis. Variance, effect size and percentage change from a control without compost or vermicompost were analysed. The scientometrics analysis revealed promising research areas including, the study of the effects of compost and vermicompost combined with rhizobia on plant physiology, nitrogen fixation, soil quality, economic benefits, microbial diversity and salinity stress. The combined use of compost and biochar emerged as the most recent research trend. Other relevant topics included the economic benefits, and environmental sustainability impacts of compost and legumes for improving soil quality and ni trogen availability. The meta-analysis showed that compost application, on average, increased nodule number by 66 %, nodule fresh weight by 52 %, plant biomass by 48 %, plant height by 21 % and yield by 20 %. Vermi compost application led to greater values in these parameters. Some scientific gaps have been addressed as: i) the effectiveness of compost at inducing nodule formation when inoculated with microbial inoculants, considering the legume species and the edaphoclimatic conditions of the experiment, ii) the effects of biochar and compost on nodulation improvement in legumes, and iii) the effect of the chemical and biological characteristics of compost (or vermicompost), especially nitrogen content or raw nitrogen-fixing bacteria present in compost in the Rhizobium-legume symbiosis. All these results confirm that using compost or vermicompost in the cultivation of legume crops is a valuable approach to increase soil fertility, crop productivity and agricultural sustainability. Consejo Superior de Investigaciones Científicas Proyecto Intramuros - CSIC Ministerio de Agricultura y Desarrollo Rural de Colombia Fondo Europeo de Desarrollo Regional 2025-10-31T21:44:49Z 2025-06 2025 article Artículo científico http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 https://www.sciencedirect.com/science/article/pii/S0929139325001891?via%3Dihub 0929-1393 https://hdl.handle.net/20.500.12324/41334 https://doi.org/10.1016/j.apsoil.2025.106051 reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA eng Applied Soil Ecology 210 Adams, D.C., Gurevitch, J., Rosenberg, M.S., 1997. Resampling tests for meta-analysis of ecological data. Ecology 78, 1277–1283. https://doi.org/10.1890/0012-9658(1997) 078[1277:RTFMAO]2.0.CO;2. Alburquerque, J., Gonzalez, J., Garcia, D., Cegarra, J., 2004. Agrochemical characterisation of “alperujo”, a solid by-product of the two-phase centrifugation method for olive oil extraction. Bioresour. Technol. 91, 195–200. https://doi.org/ 10.1016/S0960-8524(03)00177-9. Amaya-Gomez, ´ C.V., Porcel, M., Mesa-Garriga, L., Gomez- ´ Alvarez, ´ M.I., 2020. A framework for the selection of plant growth-promoting Rhizobacteria based on bacterial competence mechanisms. Appl. Environ. Microbiol. 86. https://doi.org/ 10.1128/AEM.00760-20 e00760–20. Angeles-De Paz, G., Cubero-Cardoso, J., Pozo, C., Calvo, C., Aranda, E., RobledoMahon, ´ T., 2025. Optimizing bioaugmentation for pharmaceutical stabilization of sewage sludge: A study on short-term composting under real conditions. J. Fungi. 11 (1), 67. https://doi.org/10.3390/jof11010067. Aria, M., Cuccurullo, C., 2017. Bibliometrix : an R-tool for comprehensive science mapping analysis. J. Inf. Secur. 11, 959–975. https://doi.org/10.1016/j. joi.2017.08.007. Aria, M., Cuccurullo, C., D’Aniello, L., Misuraca, M., Spano, M., 2022. Thematic analysis as a new culturomic tool: the social media coverage on COVID-19 pandemic in Italy. Sustainability 14, 3643. https://doi.org/10.3390/su14063643. Ayilara, M., Olanrewaju, O., Babalola, O., Odeyemi, O., 2020. Waste management through composting: challenges and potentials. Sustainability 12, 4456. https://doi. org/10.3390/su12114456. Benítez, E., Sainz, H., Melgar, R., Nogales, R., 2002. Vermicomposting of a lignocellulosic waste from olive oil industry: a pilot scale study. Waste Manag. Res. 20, 134–142. https://doi.org/10.1177/0734242X0202000205. Ben-Laouane, R., Ait-El-Mokhtar, M., Anli, M., Boutasknit, A., Ait Rahou, Y., Raklami, A., Oufdou, K., Wahbi, S., Meddich, A., 2021. Green compost combined with mycorrhizae and rhizobia: a strategy for improving alfalfa growth and yield under field conditions. Gesunde Pflanzen 73, 193–207. https://doi.org/10.1007/s10343- 020-00537-z. Bernal, M.P., Alburquerque, J.A., Moral, R., 2009. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresource Technol. 100, 5444–5453. https://doi.org/10.1016/j.biortech.2008.11.027. Blouin, M., Barrere, J., Meyer, N., Lartigue, S., Barot, S., Mathieu, J., 2019. Vermicompost significantly affects plant growth. A meta-analysis. Agron. Sustain. Dev. 39, 34. https://doi.org/10.1007/s13593-019-0579-x. Burén, S., Jiménez-Vicente, E., Echavarri-Erasun, C., Rubio, L.M., 2020. Biosynthesis of nitrogenase cofactors. Chem. Rev. 120, 4921–4968. https://doi.org/10.1021/acs. chemrev.9b00489. Burén, S., Rubio, L.M., 2018. State of the art in eukaryotic nitrogenase engineering. FEMS Microbiol. Lett. 365. https://doi.org/10.1093/femsle/fnx274. Bustamante, M.A., Moral, R., Paredes, C., P´erez-Espinosa, A., Moreno-Caselles, J., P´erezMurcia, M.D., 2008. Agrochemical characterisation of the solid by-products and residues from the winery and distillery industry. Waste Manag. 28, 372–380. https://doi.org/10.1016/j.wasman.2007.01.013. Callon, M., Courtial, J.P., Laville, F., 1991. Co-word analysis as a tool for describing the network of interactions between basic and technological research: the case of polymer chemistry. Scientometrics 22, 155–205. https://doi.org/10.1007/ BF02019280. Cobo, M.J., Lopez-Herrera, ´ A.G., Herrera-Viedma, E., Herrera, F., 2011. An approach for detecting, quantifying, and visualizing the evolution of a research field: a practical application to the fuzzy sets theory field. J. Inf. Secur. 5, 146–166. https://doi.org/ 10.1016/j.joi.2010.10.002 Crews, T.E., Peoples, M.B., 2004. Legume versus fertilizer sources of nitrogen: ecological tradeoffs and human needs. Agric. Ecosyst. Environ. 102, 279–297. https://doi.org/ 10.1016/j.agee.2003.09.018 de Bertoldi, M., Vallini, G., Pera, A., 1983. The biology of composting: a review. Waste Manag. Res. 1, 157–176. https://doi.org/10.1016/0734-242X(83)90055-1. Dixon, P.M., 1993. The bootstrap and the jackknife: Describing the precision of ecological indices. In: Scheiner, S.M., Gurevitch, J. (Eds.), Design and Analysis of Ecological Experiments. Chapman and Hall, New York, pp. 290–318. https://doi. org/10.1093/oso/9780195131871.001.0001. Duan, Z., Wang, Q., Wang, T., Kong, X., Zhu, G., Qiu, G., Yu, H., 2024. Application of microbial agents in organic solid waste composting: a review. J. Sci. Food Agric. 104, 5647–5659. https://doi.org/10.1002/jsfa.13323. Elrys, A.S., Metwally, M.S., Raza, S., Alnaimy, M.A., Shaheen, S.M., Chen, Z., Zhou, J., 2020. How much nitrogen does Africa need to feed itself by 2050? J. Environ. Manag. 268, 110488. https://doi.org/10.1016/j.jenvman.2020.110488. FAO, 2019. World Fertilizer Trends and Outlook to 2022. Rome. FAO and ITPS, 2015. Status of the World’s soil resources (SWSR) – Technical summary. In: Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils. Rome, Italy. Farhangi-Abriz, S., Torabian, S., Qin, R., Noulas, C., Lu, Y., Gao, S., 2021. Biochar effects on yield of cereal and legume crops using meta-analysis. Sci. Total Environ. 775, 145869. https://doi.org/10.1016/j.scitotenv.2021.145869. Fernandez-Gómez, M.J., Romero, E., Nogales, R., 2010. Feasibility of vermicomposting for vegetable greenhouse waste recycling. Bioresour. Technol. 101, 9654–9660. https://doi.org/10.1016/j.biortech.2010.07.109. Galloway, J.N., Townsend, A.R., Erisman, J.W., Bekunda, M., Cai, Z., Freney, J.R., Martinelli, L.A., Seitzinger, S.P., Sutton, M.A., 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320, 889–892. https://doi.org/10.1126/science.1136674. Gerdsri, N., Kongthon, A. 2018. Bibliometrics and social network analysis supporting the research development of emerging areas: Case studies from Thailand. Pilkington, A., Daim, T. (Eds.), Innovation Discovery: Network Analysis of Research and Invention Activity for Technology Management. World Scientific Publishing Co. Pte. Ltd. Ghisellini, P., Cialani, C., Ulgiati, S., 2016. A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. J. Clean. Prod. 114, 11–32. https://doi.org/10.1016/j.jclepro.2015.09.007. Giannakos, M., Papamitsiou, Z., Markopoulos, P., Read, J., Hourcade, J.P., 2020. Mapping child–computer interaction research through co-word analysis. Int. J. Child-Comput. Int. 23–24, 100165. https://doi.org/10.1016/j.ijcci.2020.100165. Gopal, M., Gupta, A., Shahul Hameed, K., Sathyaseelan, N., Khadeejath Rajeela, T.H., Thomas, G.V., 2020. Biochars produced from coconut palm biomass residues can aid regenerative agriculture by improving soil properties and plant yield in humid tropics. Biochar 2, 211–226. https://doi.org/10.1007/s42773-020-00043-5. Guo, Y., Ma, T., Porter, A.L., Huang, L., 2012. Text mining of information resources to inform forecasting innovation pathways. Technol. Anal. Strateg. 24, 843–861. https://doi.org/10.1080/09537325.2012.715491. Gupta, G., Dhar, S., Kumar, Adarsh, Choudhary, A.K., Dass, A., Sharma, V.K., Shukla, L., Upadhyay, P.K., Das, A., Jinger, D., Rajpoot, S.K., Sannagoudar, M.S., Kumar, Amit, Bhupenchandra, I., Tyagi, V., Joshi, E., Kumar, K., Dwivedi, P., Rajawat, M.V.S., 2022. Microbes-mediated integrated nutrient management for improved rhizomodulation, pigeonpea productivity, and soil bio-fertility in a semi-arid agroecology. Front. Microbiol. 13, 924407. https://doi.org/10.3389/ fmicb.2022.924407. Haddad, S.A., Mowrer, J., Thapa, B., 2022. Biochar and compost from cotton residues inconsistently affect water use efficiency, nodulation, and growth of legumes under arid conditions. J. Environ. Manag. 307, 114558. https://doi.org/10.1016/j. jenvman.2022.114558. Hedges, L.V., Gurevitch, J., Curtis, P.S., 1999. The meta-analysis of response ratios in experimental ecology. Ecology 80 (4), 1150–1156. https://doi.org/10.1890/0012- 9658(1999)080[1150:TMAORR]2.0.CO;2. Hedges, L.V., Olkin, I., 1985. Statistical Methods for Meta-Analysis. Academic Press, Orlando, FL. Higgins, J.P.T., Thompson, S.G., 2002. Quantifying heterogeneity in a meta-analysis. Stat. Med. 21, 1539–1558. https://doi.org/10.1002/sim.1186. Huedo-Medina, T.B., Sanchez-Meca, ´ J., Marín-Martínez, F., Botella, J., 2006. Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol. Methods 11, 193–206. https://doi.org/10.1037/1082-989X.11.2.193. Korhonen, J., Honkasalo, A., Seppal ¨ ¨ a, J., 2018. Circular economy: the concept and its limitations. Ecol. Econ. 143, 37–46. https://doi.org/10.1016/j. ecolecon.2017.06.041. Lehmann, J., Kleber, M., 2015. The contentious nature of soil organic matter. Nature 528, 60–68. https://doi.org/10.1038/nature16069. Liu, Q., Wu, K., Song, W., Zhong, N., Wu, Y., Fu, X., 2022. Improving crop nitrogen use efficiency toward sustainable green revolution. Annu. Rev. Plant Biol. 73, 523–551. https://doi.org/10.1146/annurev-arplant-070121-015752. López-González, J.A., Suárez-Estrella, F., Vargas-García, M.C., Lopez, ´ M.J., Jurado, M. M., Moreno, J., 2015a. Dynamics of bacterial microbiota during lignocellulosic waste composting: studies upon its structure, functionality and biodiversity. Bioresour. Technol. 175, 406–416. https://doi.org/10.1016/j.biortech.2014.10.123. López-González, Juan Antonio, Vargas-García, M.D.C., López, M.J., Suarez-Estrella, ´ F., Jurado, M.D.M., Moreno, J., 2015b. Biodiversity and succession of mycobiota associated to agricultural lignocellulosic waste-based composting. Bioresour. Technol. 187, 305–313. https://doi.org/10.1016/j.biortech.2015.03.124. Mathenge, C., Thuita, M., Masso, C., Gweyi-Onyango, J., Vanlauwe, B., 2019. Variability of soybean response to rhizobia inoculant, vermicompost, and a legume-specific fertilizer blend in Siaya County of Kenya. Soil Tillage Res. 194, 104290. https://doi. org/10.1016/j.still.2019.06.007. Meena, R.S., Kumar, S., 2022. Legume-based agroecosystem for sustainable intensification: An overview. In: Kumar, S. (Ed.), Swaroop Meena, R. Elsevier, Advances in Legumes for Sustainable Intensification, pp. 3–8. https://doi.org/ 10.1016/B978-0-323-85797-0.00034-3. Mengist, W., Soromessa, T., Legese, G., 2020. Method for conducting systematic literature review and meta-analysis for environmental science research. MethodsX 7, 100777. https://doi.org/10.1016/j.mex.2019.100777. Minasny, B., Malone, B.P., McBratney, A.B., Angers, D.A., Arrouays, D., Chambers, A., Chaplot, V., Chen, Z.-S., Cheng, K., Das, B.S., Field, D.J., Gimona, A., Hedley, C.B., Hong, S.Y., Mandal, B., Marchant, B.P., Martin, M., McConkey, B.G., Mulder, V.L., O’Rourke, S., Richer-de-Forges, A.C., Odeh, I., Padarian, J., Paustian, K., Pan, G., Poggio, L., Savin, I., Stolbovoy, V., Stockmann, U., Sulaeman, Y., Tsui, C.-C., Vågen, T.-G., Van Wesemael, B., Winowiecki, L., 2017. Soil carbon 4 per mille. Geoderma 292, 59–86. https://doi.org/10.1016/j.geoderma.2017.01.002. Mingers, J., Leydesdorff, L., 2015. A review of theory and practice in scientometrics. Eur. J. Oper. Res. 246 (1), 1–19. https://doi.org/10.1016/j.ejor.2015.04.002. Morrissy, J.G., Currell, M.J., Reichman, S.M., Surapaneni, A., Megharaj, M., Crosbie, N. D., Hirth, D., Aquilina, S., Rajendram, W., Ball, A.S., 2021. Nitrogen contamination and bioremediation in groundwater and the environment: a review. Earth Sci. Rev. 222, 103816. https://doi.org/10.1016/j.earscirev.2021.103816. O’Callaghan, M., Ballard, R.A., Wright, D., 2022. Soil microbial inoculants for sustainable agriculture: limitations and opportunities. Soil Use Manag. 38, 1340–1369. https://doi.org/10.1111/sum.12811. OECD-FAO., 2023. OECD-FAO Agricultural Outlook 2023-2032. OECD Publishing, Paris. https://doi.org/10.1787/08801ab7-en. Orwin, R.G., 1983. A fail-safe N for effect size in meta-analysis. J. Educ. Stat. 8 (2), 157–159. https://doi.org/10.2307/1164923. Peix, A., Ramírez-Bahena, M.H., Velazquez, ´ E., Bedmar, E.J., 2015. Bacterial associations with legumes. CRC Cr. Rev. Plant Sci. 34, 17–42. https://doi.org/10.1080/ 07352689.2014.897899. Peoples, M.B., Brockwell, J., Herridge, D.F., Rochester, I.J., Alves, B.J.R., Urquiaga, S., Boddey, R.M., Dakora, F.D., Bhattarai, S., Maskey, S.L., Sampet, C., Rerkasem, B., Khan, D.F., Hauggaard-Nielsen, H., Jensen, E.S., 2009. The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 48, 1–17. https://doi.org/10.1007/BF03179980. Phillips, R.L., 2014. Green revolution: Past, present, and future. In: Alfen, Van (Ed.), Neal K. Elsevier, Encyclopedia of Agriculture and Food Systems, pp. 529–538. https://doi. org/10.1016/B978-0-444-52512-3.00208-4. Poole, P., Ramachandran, V., Terpolilli, J., 2018. Rhizobia: from saprophytes to endosymbionts. Nat. Rev. Microbiol. 16, 291–303. https://doi.org/10.1038/ nrmicro.2017.171. Purwaningsih, O., Pamungkas, P.B., Beny, D., Oktavia, M., 2021. Response of soybean growth in sandy coastal soil to seaweed compost and biochar application. J. Phys. Conf. Ser. 1823, 012028. https://doi.org/10.1088/1742-6596/1823/1/012028. Rehman, S.U., De Castro, F., Aprile, A., Benedetti, M., Fanizzi, F.P., 2023. Vermicompost: enhancing plant growth and combating abiotic and biotic stress. Agronomy 13, 1134. https://doi.org/10.3390/agronomy13041134. Rodriguez-Campos, J., Dendooven, L., Alvarez-Bernal, D., Contreras-Ramos, S.M., 2014. Potential of earthworms to accelerate removal of organic contaminants from soil: a review. Appl. Soil Ecol. 79, 10–25. https://doi.org/10.1016/j.apsoil.2014.02.010. Rosenberg, M.S., 2024. MetaWin 3: open-source software for meta-analysis. Front. Bioinform. 4, 1305969. https://doi.org/10.3389/fbinf.2024.1305969. Rosenthal, R., 1979. The “file drawer problem” and tolerance for null results. Psychol. Bull. 86 (3), 638–641. https://doi.org/10.1037/0033-2909.86.3.638. Rutten, P.J., Poole, P.S., 2019. Oxygen regulatory mechanisms of nitrogen fixation in rhizobia. Adv. Microb. Physiol. 75, 325–389. https://doi.org/10.1016/bs. ampbs.2019.08.001 (PMID: 31655741). Ryckeboer, J., Mergaert, J., Vaes, K., Klammer, S.H., Clercq, D.D., Coosemans, J., Insam, H., Swings, J., 2003. A survey of bacteria and fungi occurring during composting and self-heating processes. Ann. Microbiol. 53, 349–410. Salinas, J., Martinez-Gallardo, M.R., Jurado, M.M., Suarez-Estrella, F., LopezGonzalez, J.A., Estrella-Gonzalez, M.J., Toribio, A.J., Carpena-Istan, V., Lopez, M.J., 2025. Construction of versatile plastic-degrading microbial consortia based on ligninolytic microorganisms associated with agricultural waste composting. Environ. Pollut. 366, 12533. https://doi.org/10.1016/j.envpol.2024.125333. Salvador, G.L.O., Araujo, F.F., Pereira, A.P.D.A., Bonifacio, A., Araujo, A.S.F., 2022. Rhizobacteria and arbuscular mycorrhizal fungus presented distinct and specific effects on soybean growth when inoculated with organic compost. Rhizosphere 22, 100513. https://doi.org/10.1016/j.rhisph.2022.100513. Sharma, B., Vaish, B., Monika, Singh, U.K., Singh, P., Singh, R.P., 2019. Recycling of organic wastes in agriculture: an environmental perspective. Int. J. Environ. Res. 13, 409–429. doi:https://doi.org/10.1007/s41742-019-00175-y. Sohrabi, B., Vanani, I.R., Jalali, S.M.J., Abedin, E., 2019. Evaluation of research trends in knowledge management: a hybrid analysis through burst detection and text clustering. J. Inf. Knowl. Manag. 18 (4), 1950043. https://doi.org/10.1142/ S0219649219500436. Stagnari, F., Maggio, A., Galieni, A., Pisante, M., 2017. Multiple benefits of legumes for agriculture sustainability: an overview. Chem. Biol. Technol. Agric. 4, 2. https://doi. org/10.1186/s40538-016-0085-1. Stevenson, F.J., 1994. Humus Chemistry: Genesis, Composition, Reactions, second ed. John Wiley & Sons, Inc, (ISBN 978-0-471-59474-1.). Suzaki, T., Yoro, E., Kawaguchi, M., 2015. Leguminous plants: inventors of root nodules to accommodate symbiotic bacteria. Int. Rev. Cell Mol. Biol. 316, 111–158. https:// doi.org/10.1016/bs.ircmb.2015.01.004. Tan, Z.X., Lal, R., Wiebe, K.D., 2005. Global soil nutrient depletion and yield reduction. J. Sustain. Agric. 26, 123–146. https://doi.org/10.1300/J064v26n01_10. Tortosa, G., Alburquerque, J.A., Ait-Baddi, G., Cegarra, J., 2012. The production of commercial organic amendments and fertilisers by composting of two-phase olive mill waste (“alperujo”). J. Clean. Prod. 26, 48–55. https://doi.org/10.1016/j. jclepro.2011.12.008. Tortosa, G., Correa, D., Sanchez-Raya, ´ A.J., Delgado, A., S´ anchez-Monedero, M.A., Bedmar, E.J., 2011. Effects of nitrate contamination and seasonal variation on the denitrification and greenhouse gas production in La Rocina stream (Donana ˜ National Park, SW Spain). Ecol. Eng. 37, 539–548. https://doi.org/10.1016/j. ecoleng.2010.06.029. Tortosa, G., Gonz´ alez-Gordo, S., Ruiz, C., Bedmar, E., Palma, J., 2018. “Alperujo” compost improves the ascorbate (vitamin C) content in pepper (Capsicum annuum L.) fruits and influences their oxidative metabolism. Agronomy 8, 82. https://doi.org/ 10.3390/agronomy8060082. Tortosa, G., Mesa, S., Delgado, M.J., Amaya-Gomez, ´ C.V., 2023. “Alperujo” compost improves nodulation and symbiotic nitrogen fixation of soybean inoculated with Bradyrhizobium diazoefficiens. Nitrogen 4, 223–230. https://doi.org/10.3390/ nitrogen4020015. Tsiafouli, M.A., Th´ebault, E., Sgardelis, S.P., De Ruiter, P.C., Van Der Putten, W.H., Birkhofer, K., Hemerik, L., De Vries, F.T., Bardgett, R.D., Brady, M.V., Bjornlund, L., Jørgensen, H.B., Christensen, S., Hertefeldt, T.D., Hotes, S., Gera Hol, W.H., Frouz, J., Liiri, M., Mortimer, S.R., Set¨ ala, ¨ H., Tzanopoulos, J., Uteseny, K., Piˇzl, V., Stary, J., Wolters, V., Hedlund, K., 2015. Intensive agriculture reduces soil biodiversity across Europe. Glob. Chang. Biol. 21, 973–985. https://doi.org/ 10.1111/gcb.12752. Ulzen, J., Abaidoo, R.C., Ewusi-Mensah, N., Osei, O., Masso, C., Opoku, A., 2020. Organic manure improves soybean response to rhizobia inoculant and P-fertilizer in northern Ghana. Front. Agron. 2, 9. https://doi.org/10.3389/fagro.2020.00009. Van Eck, N.J., Waltman, L., 2010. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84, 523–538. https://doi.org/10.1007/ s11192-009-0146-3. Van Groenigen, J.W., Van Groenigen, K.J., Koopmans, G.F., Stokkermans, L., Vos, H.M. J., Lubbers, I.M., 2019. How fertile are earthworm casts? A meta-analysis. Geoderma 338, 525–535. https://doi.org/10.1016/j.geoderma.2018.11.001. Vitousek, P.M., Aber, J.D., Howarth, R.W., Likens, G.E., Matson, P.A., Schindler, D.W., Schlesinger, W.H., Tilman, D.G., 1997. Human alteration of the global nitrogen cycle: sources and consequences. Ecol. Appl. 7, 737–750. https://doi.org/10.1890/ 1051-0761(1997)007[0737:HAOTGN]2.0.CO;2. Voisin, A.-S., Gu´eguen, J., Huyghe, C., Jeuffroy, M.-H., Magrini, M.-B., Meynard, J.-M., Mougel, C., Pellerin, S., Pelzer, E., 2014. Legumes for feed, food, biomaterials and bioenergy in Europe: a review. Agron. Sustain. Dev. 34, 361–380. https://doi.org/ 10.1007/s13593-013-0189-y. Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., Von Lützow, M., Marin-Spiotta, E., Van Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco, N., Wollschl¨ ager, U., Vogel, H.-J., Kogel-Knabner, ¨ I., 2019. Soil organic carbon storage as a key function of soils - a review of drivers and indicators at various scales. Geoderma 333, 149–162. https:// doi.org/10.1016/j.geoderma.2018.07.026. Yang, J., Lan, L., Jin, Y., Yu, N., Wang, D., Wang, E., 2022. Mechanisms underlying legume–rhizobium symbioses. J. Integr. Plant Biol. 64, 244–267. https://doi.org/ 10.1111/jipb.13207. Atribución-NoComercial-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf application/pdf Sede Central Elsevier B.V. Applied Soil Ecology; Vol. 210, (2025): Applied Soil Ecology (Junio). |
| spellingShingle | Compost Endosymbionts Inoculants Meta-analysis Nodules Scientometric analysis Vermicompost Transversal Amaya Gomez, Carol V. Florez Martínez, Diego H. Cayuela, María Luz Tortosa, Germán Compost and vermicompost improve symbiotic nitrogen fixation, physiology and yield of the Rhizobium-legume symbiosis: A systematic review |
| title | Compost and vermicompost improve symbiotic nitrogen fixation, physiology and yield of the Rhizobium-legume symbiosis: A systematic review |
| title_full | Compost and vermicompost improve symbiotic nitrogen fixation, physiology and yield of the Rhizobium-legume symbiosis: A systematic review |
| title_fullStr | Compost and vermicompost improve symbiotic nitrogen fixation, physiology and yield of the Rhizobium-legume symbiosis: A systematic review |
| title_full_unstemmed | Compost and vermicompost improve symbiotic nitrogen fixation, physiology and yield of the Rhizobium-legume symbiosis: A systematic review |
| title_short | Compost and vermicompost improve symbiotic nitrogen fixation, physiology and yield of the Rhizobium-legume symbiosis: A systematic review |
| title_sort | compost and vermicompost improve symbiotic nitrogen fixation physiology and yield of the rhizobium legume symbiosis a systematic review |
| topic | Compost Endosymbionts Inoculants Meta-analysis Nodules Scientometric analysis Vermicompost Transversal |
| url | https://www.sciencedirect.com/science/article/pii/S0929139325001891?via%3Dihub https://hdl.handle.net/20.500.12324/41334 https://doi.org/10.1016/j.apsoil.2025.106051 |
| work_keys_str_mv | AT amayagomezcarolv compostandvermicompostimprovesymbioticnitrogenfixationphysiologyandyieldoftherhizobiumlegumesymbiosisasystematicreview AT florezmartinezdiegoh compostandvermicompostimprovesymbioticnitrogenfixationphysiologyandyieldoftherhizobiumlegumesymbiosisasystematicreview AT cayuelamarialuz compostandvermicompostimprovesymbioticnitrogenfixationphysiologyandyieldoftherhizobiumlegumesymbiosisasystematicreview AT tortosagerman compostandvermicompostimprovesymbioticnitrogenfixationphysiologyandyieldoftherhizobiumlegumesymbiosisasystematicreview |