In-Field Forage Biomass and Quality Prediction Using Image and VIS-NIR Proximal Sensing with Machine Learning and Covariance-Based Strategies for Livestock Management in Silvopastoral Systems
Controlling forage quality and grazing are crucial for sustainable livestock production, health, productivity, and animal performance. However, the limited availability of reliable handheld sensors for timely pasture quality prediction hinders farmers’ ability to make informed decisions. This stud...
| Autores principales: | , , , , , , |
|---|---|
| Formato: | article |
| Lenguaje: | Inglés |
| Publicado: |
Multidisciplinary Digital Publishing Institute (MDPI)
2025
|
| Materias: | |
| Acceso en línea: | https://www.mdpi.com/2624-7402/7/4/111 https://hdl.handle.net/20.500.12324/41271 https://doi.org/10.3390/agriengineering7040111 |
Ejemplares similares: In-Field Forage Biomass and Quality Prediction Using Image and VIS-NIR Proximal Sensing with Machine Learning and Covariance-Based Strategies for Livestock Management in Silvopastoral Systems
- Caracterización fisicoquímica y proximal del fruto de pitahaya amarilla [Selenicereus megalanthus (K. schum. ex vaupel) moran] cultivada en Colombia
- Informe anual 2019: Centro de Investigación el Nus, Centro de Investigación la Selva, Sede Eje Cafetero
- Conclusiones del 1er. congreso nacional de usuarios campesinos.
- Gross Primary Production of Rainfed and Irrigated Potato (Solanum tuberosum L.) in the Colombian Andean Region Using Eddy Covariance Technique
- Using vis-NIRS and Machine Learning methods to diagnose sugarcane soil chemical properties
- Diagnóstico de la transferencia de tecnología agropecuaria en Colombia, 1. Necesidades tecnológicas y circunstancias socioeconómicas de los productores en el CRECED del Bajo Magdalena 1990-1994.