In-Field Forage Biomass and Quality Prediction Using Image and VIS-NIR Proximal Sensing with Machine Learning and Covariance-Based Strategies for Livestock Management in Silvopastoral Systems

Controlling forage quality and grazing are crucial for sustainable livestock production, health, productivity, and animal performance. However, the limited availability of reliable handheld sensors for timely pasture quality prediction hinders farmers’ ability to make informed decisions. This stud...

Descripción completa

Detalles Bibliográficos
Autores principales: Serpa Imbett, Claudia M., Gómez Palencia, Erika L., Medina Herrera, Diego A., Mejía Luquez, Jorge A., Martínez, Remberto R., Burgos Paz, William O., Aguayo Ulloa, Lorena A.
Formato: article
Lenguaje:Inglés
Publicado: Multidisciplinary Digital Publishing Institute (MDPI) 2025
Materias:
Acceso en línea:https://www.mdpi.com/2624-7402/7/4/111
https://hdl.handle.net/20.500.12324/41271
https://doi.org/10.3390/agriengineering7040111

Ejemplares similares: In-Field Forage Biomass and Quality Prediction Using Image and VIS-NIR Proximal Sensing with Machine Learning and Covariance-Based Strategies for Livestock Management in Silvopastoral Systems