In-Field Forage Biomass and Quality Prediction Using Image and VIS-NIR Proximal Sensing with Machine Learning and Covariance-Based Strategies for Livestock Management in Silvopastoral Systems
Controlling forage quality and grazing are crucial for sustainable livestock production, health, productivity, and animal performance. However, the limited availability of reliable handheld sensors for timely pasture quality prediction hinders farmers’ ability to make informed decisions. This stud...
| Autores principales: | , , , , , , |
|---|---|
| Formato: | Artículo |
| Lenguaje: | Inglés |
| Publicado: |
Multidisciplinary Digital Publishing Institute (MDPI)
2025
|
| Materias: | |
| Acceso en línea: | https://www.mdpi.com/2624-7402/7/4/111 https://hdl.handle.net/20.500.12324/41271 https://doi.org/10.3390/agriengineering7040111 |
Ejemplares similares: In-Field Forage Biomass and Quality Prediction Using Image and VIS-NIR Proximal Sensing with Machine Learning and Covariance-Based Strategies for Livestock Management in Silvopastoral Systems
- Cobertura en suelos con procesos acelerados de erosión
- Setting of a mathematical model for the sugarcane bagasse combustion in a Ward-Cimpa chamber
- Producción de enzimas hemicelulolíticas y celulolíticas de T. koningiopsis Th003 a partir de bagazo de caña pretratado
- Biomass and protein production of Chlorella vulgarisBeyerinck (Chlorellales : Chlorellaceae) via the design of selective culture media
- Informe anual 2019: Centro de Investigación el Nus, Centro de Investigación la Selva, Sede Eje Cafetero
- Conclusiones del 1er. congreso nacional de usuarios campesinos.