Gross Primary Production of Rainfed and Irrigated Potato (Solanum tuberosum L.) in the Colombian Andean Region Using Eddy Covariance Technique
Potato farming is relevant for global carbon balances and greenhouse emissions, of which gross primary productivity (GPP) is one of the main drivers. In this study, the net carbon ecosystem exchange (NEE) was measured using the Eddy Covariance (EC) method in two potato crops, one of them with an...
| Autores principales: | , , , |
|---|---|
| Formato: | article |
| Lenguaje: | Español |
| Publicado: |
MDPI
2025
|
| Materias: | |
| Acceso en línea: | http://hdl.handle.net/20.500.12324/41221 https://doi.org/10.3390/w13223223 |
| _version_ | 1854959113199419392 |
|---|---|
| author | Martínez Maldonado, Fabio Ernesto Castaño Marín, Angela María Góez Vinasco, Gerardo Antonio Marin, Fabio Ricardo |
| author_browse | Castaño Marín, Angela María Góez Vinasco, Gerardo Antonio Marin, Fabio Ricardo Martínez Maldonado, Fabio Ernesto |
| author_facet | Martínez Maldonado, Fabio Ernesto Castaño Marín, Angela María Góez Vinasco, Gerardo Antonio Marin, Fabio Ricardo |
| author_sort | Martínez Maldonado, Fabio Ernesto |
| collection | Repositorio AGROSAVIA |
| description | Potato farming is relevant for global carbon balances and greenhouse emissions, of which
gross primary productivity (GPP) is one of the main drivers. In this study, the net carbon ecosystem
exchange (NEE) was measured using the Eddy Covariance (EC) method in two potato crops, one
of them with an irrigation system, the other under rainfed conditions. Accurate NEE partition into
GPP and ecosystem respiration (RECO) was carried out by fitting a light response curve. Direct
measurements of dry weight and leaf area were performed from sowing to the end of canopy life
cycle and tuber bulking. Agricultural drought in the rainfed crop resulted in limited GPP rate, low
leaf area index (LAI), and low canopy carbon assimilation response to the photosynthetically active
radiation (PAR). Hence, in this crop, there was lower efficiency in tuber biomass gain and NEE
sum indicated net carbon emissions to atmosphere (NEE = 154.7 g C m�����2 30.21). In contrast, the
irrigated crop showed higher GPP rate and acted as a carbon sink (NEE = �����366.6 g C m�����2 50.30).
Our results show, the environmental and productive benefits of potato crops grown under optimal
water supply. |
| format | article |
| id | RepoAGROSAVIA41221 |
| institution | Corporación Colombiana de Investigación Agropecuaria |
| language | Español |
| publishDate | 2025 |
| publishDateRange | 2025 |
| publishDateSort | 2025 |
| publisher | MDPI |
| publisherStr | MDPI |
| record_format | dspace |
| spelling | RepoAGROSAVIA412212025-09-12T03:01:27Z Gross Primary Production of Rainfed and Irrigated Potato (Solanum tuberosum L.) in the Colombian Andean Region Using Eddy Covariance Technique Martínez Maldonado, Fabio Ernesto Castaño Marín, Angela María Góez Vinasco, Gerardo Antonio Marin, Fabio Ricardo Conservación de la naturaleza y recursos de la tierra - P01 Solanum tuberosum Déficit hídrico Carbono Ecosistema Raíces y tubérculos http://aims.fao.org/aos/agrovoc/c_7221 http://aims.fao.org/aos/agrovoc/c_29112865 http://aims.fao.org/aos/agrovoc/c_1301 http://aims.fao.org/aos/agrovoc/c_2482 Potato farming is relevant for global carbon balances and greenhouse emissions, of which gross primary productivity (GPP) is one of the main drivers. In this study, the net carbon ecosystem exchange (NEE) was measured using the Eddy Covariance (EC) method in two potato crops, one of them with an irrigation system, the other under rainfed conditions. Accurate NEE partition into GPP and ecosystem respiration (RECO) was carried out by fitting a light response curve. Direct measurements of dry weight and leaf area were performed from sowing to the end of canopy life cycle and tuber bulking. Agricultural drought in the rainfed crop resulted in limited GPP rate, low leaf area index (LAI), and low canopy carbon assimilation response to the photosynthetically active radiation (PAR). Hence, in this crop, there was lower efficiency in tuber biomass gain and NEE sum indicated net carbon emissions to atmosphere (NEE = 154.7 g C m�����2 30.21). In contrast, the irrigated crop showed higher GPP rate and acted as a carbon sink (NEE = �����366.6 g C m�����2 50.30). Our results show, the environmental and productive benefits of potato crops grown under optimal water supply. Papa-Solanum tuberosum 2025-09-11T17:28:52Z 2025-09-11T17:28:52Z 2021 2021 article Artículo científico http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 http://hdl.handle.net/20.500.12324/41221 https://doi.org/10.3390/w13223223 reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA spa Cultivares de cítricos con características agronómicas, fitosanitarias y calidad de fruto determinadas Plan View Plan View 8724 8725 190388 192120 Agua 13 22 1 15 Paillard, S.; Treyer, S.; Dorin, B. Agrimonde–Scenarios and Challenges for Feeding the World in 2050; Paillard, S., Treyer, S., Dorin, B., Eds.; Springer: Dordrecht, The Netherlands, 2014; ISBN 978-94-017-8744-4 FAO. The Future of Food and Agriculture Trends and Challenges; FAO—Food and Agriculture Organization of the United Nations: Roma, Italy, 2017; ISBN 978-92-5-109551-5. Kole, C. Genomic Designing of Climate-Smart Cereal Crops; Springer Nature Switzerland AG 2020: New Delhi, India, 2020; ISBN 978-3-319-97414-9 Smith, L.G.; Kirk, G.J.D.; Jones, P.J.;Williams, A.G. The greenhouse gas impacts of converting food production in England and Wales to organic methods. Nat. Commun. 2019, 10, 1–10. [CrossRef Verma, S.B.; Dobermann, A.; Cassman, K.G.; Walters, D.T.; Knops, J.M.; Arkebauer, T.J.; Suyker, A.E.; Burba, G.G.; Amos, B.; Yang, H.; et al. Annual carbon dioxide exchange in irrigated and rainfed maize-based agroecosystems. Agric. For. Meteorol. 2005, 131, 77–96. [CrossRef] Li, X.; Ramírez, D.A.; Qin, J.; Dormatey, R.; Bi, Z.; Sun, C.; Wang, H.; Bai, J. Water restriction scenarios and their effects on traits in potato with different degrees of drought tolerance. Sci. Hortic. 2019, 256. [CrossRef] Mosquera Vásquez, T.; Del Castillo, S.; Gálvez, D.C.; Rodríguez, L.E. Breeding Differently: Participatory Selection and Scaling Up Innovations in Colombia. Potato Res. 2017, 60, 361–381. [CrossRef] U.S. Department of Agriculture-USDA. Natural Resources Conservation Services—NRCS Claves para la Taxonomía de Suelos; XII; Estado de México. 2014; ISBN 0926487221. Available online: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142 p2_051546.pdf (accessed on 29 September 2021). Hunt, R. BASIC GROWTH ANALYSIS; Academic Division of Unwin Hyman Ltd.: London, UK, 1990; Volume 148, ISBN 9780044453734. Moncrieff, J.B.; Massheder, J.M.; De Bruin, H.; Elbers, J.; Friborg, T.; Heusinkveld, B.; Kabat, P.; Scott, S.; Soegaard, H.; Verhoef, A. A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. J. Hydrol. 1997, 188–189, 589–611. [CrossRef] Webb, E.K.; Pearman, G.I.; Leuning, R. Correction of flux measurements for density effects due to heat and water vapour transfer. Q. J. R. Meteorol. Soc. 1980, 106, 85–100. [CrossRef] Kormann, R.; Meixner, F.X. An analytical footprint model for non-neutral stratification. Bound.-Layer Meteorol. 2001, 99, 207–224. [CrossRef] Papale, D.; Reichstein, M.; Aubinet, M.; Canfora, E.; Bernhofer, C.; Kutsch,W.; Longdoz, B.; Rambal, S.; Valentini, R.; Vesala, T.; et al. Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: Algorithms and uncertainty estimation. Biogeosciences 2006, 3, 571–583. [CrossRef] Reichstein, M.; Falge, E.; Baldocchi, D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; Granier, A. On the separation of net ecosystem exchange into assimilation and ecosystem respiration : Review and improved algorithm. Glob. Chang. Biol. 2005, 11, 1424–1439. Tagesson, T.; Fensholt, R.; Cropley, F.; Guiro, I.; Horion, S.; Ehammer, A.; Ardo, J. Dynamics in carbon exchange fluxes for a grazed semi-arid savanna ecosystem in West Africa. Agric. Ecosyst. Environ. 2015, 205, 15–24 Richardson, A.D.; Hollinger, D.Y.; Burba, G.G.; Davis, K.J.; Flanagan, L.B.; Katul, G.G.; Munger, J.W.; Ricciuto, D.M.; Stoy, P.C.; Suyker, A.E.; et al. A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes. Agric. For. Meteorol. 2006, 136, 1–18. Campbell, G.S.; Norman, J.M. An Introduction to Environmental Biophysics, 2nd ed.; Springer: Pullman, WA, USA, 1998; Volume 6, ISBN 0387949372. Chi, J.;Waldo, S.; Pressley, S.; O’Keeffe, P.; Huggins, D.; Stöckle, C.; Pan,W.L.; Brooks, E.; Lamb, B. Assessing carbon and water dynamics of no-till and conventional tillage cropping systems in the inland Pacific Northwest US using the eddy covariance method. Agric. For. Meteorol. 2016, 218–219, 37–49. Sistema de información agroclimática para papa. SIAP Clon AGROSAVIA Naranja Margarita Atribución-NoComercial-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf application/pdf MDPI Bogotá (Colombia) Agua; Vol 13, Num. 22 (2021): Agua; p. 1-15. |
| spellingShingle | Conservación de la naturaleza y recursos de la tierra - P01 Solanum tuberosum Déficit hídrico Carbono Ecosistema Raíces y tubérculos http://aims.fao.org/aos/agrovoc/c_7221 http://aims.fao.org/aos/agrovoc/c_29112865 http://aims.fao.org/aos/agrovoc/c_1301 http://aims.fao.org/aos/agrovoc/c_2482 Martínez Maldonado, Fabio Ernesto Castaño Marín, Angela María Góez Vinasco, Gerardo Antonio Marin, Fabio Ricardo Gross Primary Production of Rainfed and Irrigated Potato (Solanum tuberosum L.) in the Colombian Andean Region Using Eddy Covariance Technique |
| title | Gross Primary Production of Rainfed and Irrigated Potato (Solanum tuberosum L.) in the Colombian Andean Region Using Eddy Covariance Technique |
| title_full | Gross Primary Production of Rainfed and Irrigated Potato (Solanum tuberosum L.) in the Colombian Andean Region Using Eddy Covariance Technique |
| title_fullStr | Gross Primary Production of Rainfed and Irrigated Potato (Solanum tuberosum L.) in the Colombian Andean Region Using Eddy Covariance Technique |
| title_full_unstemmed | Gross Primary Production of Rainfed and Irrigated Potato (Solanum tuberosum L.) in the Colombian Andean Region Using Eddy Covariance Technique |
| title_short | Gross Primary Production of Rainfed and Irrigated Potato (Solanum tuberosum L.) in the Colombian Andean Region Using Eddy Covariance Technique |
| title_sort | gross primary production of rainfed and irrigated potato solanum tuberosum l in the colombian andean region using eddy covariance technique |
| topic | Conservación de la naturaleza y recursos de la tierra - P01 Solanum tuberosum Déficit hídrico Carbono Ecosistema Raíces y tubérculos http://aims.fao.org/aos/agrovoc/c_7221 http://aims.fao.org/aos/agrovoc/c_29112865 http://aims.fao.org/aos/agrovoc/c_1301 http://aims.fao.org/aos/agrovoc/c_2482 |
| url | http://hdl.handle.net/20.500.12324/41221 https://doi.org/10.3390/w13223223 |
| work_keys_str_mv | AT martinezmaldonadofabioernesto grossprimaryproductionofrainfedandirrigatedpotatosolanumtuberosumlinthecolombianandeanregionusingeddycovariancetechnique AT castanomarinangelamaria grossprimaryproductionofrainfedandirrigatedpotatosolanumtuberosumlinthecolombianandeanregionusingeddycovariancetechnique AT goezvinascogerardoantonio grossprimaryproductionofrainfedandirrigatedpotatosolanumtuberosumlinthecolombianandeanregionusingeddycovariancetechnique AT marinfabioricardo grossprimaryproductionofrainfedandirrigatedpotatosolanumtuberosumlinthecolombianandeanregionusingeddycovariancetechnique |