Mechanisms of cell size regulation in slow-growing Escherichia coli cells: discriminating models beyond the adder

Under ideal conditions, Escherichia coli cells divide after adding a fixed cell size, a strategy known as the adder. This concept applies to various microbes and is often explained as the division that occurs after a certain number of stages, associated with the accumulation of precursor proteins...

Descripción completa

Detalles Bibliográficos
Autores principales: Nieto, César, Vargas García, César Augusto, Pedraza, Juan Manuel, Singh, Abhyudai
Formato: Artículo
Lenguaje:Inglés
Publicado: Nature Research 2025
Materias:
Acceso en línea:https://www.nature.com/articles/s41540-024-00383-z
http://hdl.handle.net/20.500.12324/41190
https://doi.org/10.1038/s41540-024-00383-z
_version_ 1855494513886232576
author Nieto, César
Vargas García, César Augusto
Pedraza, Juan Manuel
Singh, Abhyudai
author_browse Nieto, César
Pedraza, Juan Manuel
Singh, Abhyudai
Vargas García, César Augusto
author_facet Nieto, César
Vargas García, César Augusto
Pedraza, Juan Manuel
Singh, Abhyudai
author_sort Nieto, César
collection Repositorio AGROSAVIA
description Under ideal conditions, Escherichia coli cells divide after adding a fixed cell size, a strategy known as the adder. This concept applies to various microbes and is often explained as the division that occurs after a certain number of stages, associated with the accumulation of precursor proteins at a rate proportional to cell size. However, under poor media conditions, E. coli cells exhibit a different size regulation. They are smaller and follow a sizer-like division strategy where the added size is inversely proportional to the size at birth. We explore three potential causes for this deviation: degradation of the precursor protein and two models where the propensity for accumulation depends on the cell size: a nonlinear accumulation rate, and accumulation starting at a threshold size termed the commitment size. These models fit the mean trends but predict different distributions given the birth size. To quantify the precision of the models to explain the data, we used the Akaike information criterion and compared them to open datasets of slow-growing E. coli cells in different media. We found that none of the models alone can consistently explain the data. However, the degradation model better explains the division strategy when cells are larger, whereas size-related models (power-law and commitment size) account for smaller cells. Our methodology proposes a data-based method in which different mechanisms can be tested systematically
format Artículo
id RepoAGROSAVIA41190
institution Corporación Colombiana de Investigación Agropecuaria
language Inglés
publishDate 2025
publishDateRange 2025
publishDateSort 2025
publisher Nature Research
publisherStr Nature Research
record_format dspace
spelling RepoAGROSAVIA411902025-09-06T03:00:23Z Mechanisms of cell size regulation in slow-growing Escherichia coli cells: discriminating models beyond the adder Mechanisms of cell size regulation in slow-growing Escherichia coli cells: discriminating models beyond the adder Nieto, César Vargas García, César Augusto Pedraza, Juan Manuel Singh, Abhyudai Investigación agropecuaria - A50 Escherichia coli Biología molecular Proteínas Transversal http://aims.fao.org/aos/agrovoc/c_33700 http://aims.fao.org/aos/agrovoc/c_4891 http://aims.fao.org/aos/agrovoc/c_13621 Under ideal conditions, Escherichia coli cells divide after adding a fixed cell size, a strategy known as the adder. This concept applies to various microbes and is often explained as the division that occurs after a certain number of stages, associated with the accumulation of precursor proteins at a rate proportional to cell size. However, under poor media conditions, E. coli cells exhibit a different size regulation. They are smaller and follow a sizer-like division strategy where the added size is inversely proportional to the size at birth. We explore three potential causes for this deviation: degradation of the precursor protein and two models where the propensity for accumulation depends on the cell size: a nonlinear accumulation rate, and accumulation starting at a threshold size termed the commitment size. These models fit the mean trends but predict different distributions given the birth size. To quantify the precision of the models to explain the data, we used the Akaike information criterion and compared them to open datasets of slow-growing E. coli cells in different media. We found that none of the models alone can consistently explain the data. However, the degradation model better explains the division strategy when cells are larger, whereas size-related models (power-law and commitment size) account for smaller cells. Our methodology proposes a data-based method in which different mechanisms can be tested systematically U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (R35GM148351) 2025-09-05T14:32:44Z 2025-09-05T14:32:44Z 2024-05-29 2024 article Artículo científico http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 https://www.nature.com/articles/s41540-024-00383-z 2056-7189 http://hdl.handle.net/20.500.12324/41190 https://doi.org/10.1038/s41540-024-00383-z reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA eng npj Systems Biology and Applications 10 61 Vargas-Garcia, C. A., Soltani, M. & Singh, A. Conditions for cell size homeostasis: a stochastic hybrid system approach. IEEE Life Sci. Lett. 2, 47–50 (2016). Taheri-Araghi, S. et al. Cell-size control and homeostasis in bacteria. Curr. Biol. 25, 385–391 (2015). Jun, S. & Taheri-Araghi, S. Cell-size maintenance: universal strategy revealed. Trends Microbiol. 23, 4–6 (2015). Si, F. et al. Mechanistic origin of cell-size control and homeostasis in bacteria. Curr. Biol. 29, 1760–1770 (2019). Jun, S., Si, F., Pugatch, R. & Scott, M. Fundamental principles in bacterial physiology—history, recent progress, and the future with focus on cell size control: a review. Rep. Prog. Phys. 81, 056601 (2018). Campos, M. et al. A constant size extension drives bacterial cell size homeostasis. Cell 159, 1433–1446 (2014). Kar, P., Tiruvadi-Krishnan, S., Männik, J., Männik, J. & Amir, A. Using conditional independence tests to elucidate causal links in cell cycle regulation in Escherichia coli. Proc. Natl Acad. Sci. USA 120, e2214796120 (2023). Männik, J., Walker, B. E. & Männik, J. Cell cycle-dependent regulation of ftsz in Escherichia coli in slow growth conditions. Mol. Microbiol. 110, 1030–1044 (2018). Wallden, M., Fange, D., Lundius, E. G., Baltekin, Ö. & Elf, J. The synchronization of replication and division cycles in individual E. coli cells. Cell 166, 729–739 (2016). Priestman, M., Thomas, P., Robertson, B. D. & Shahrezaei, V. Mycobacteria modify their cell size control under sub-optimal carbon sources. Front. Cell Dev. Biol. 5, 64 (2017). Opalko, H. E. et al. Arf6 anchors cdr2 nodes at the cell cortex to control cell size at division. J. Cell Biol. 221, e202109152 (2021). Erickson, H. P., Anderson, D. E. & Osawa, M. Ftsz in bacterial cytokinesis: cytoskeleton and force generator all in one. Microbiol. Mol. Biol. Rev. 74, 504–528 (2010). Jia, C., Singh, A. & Grima, R. Cell size distribution of lineage data: analytic results and parameter inference. Iscience 24, 102220 (2021). Ghusinga, K. R., Vargas-Garcia, C. A. & Singh, A. A mechanistic stochastic framework for regulating bacterial cell division. Sci. Rep. 6, 30229 (2016). Basan, M. et al. Inflating bacterial cells by increased protein synthesis. Mol. Syst. Biol. 11, 836 (2015). Nieto, C., Blanco, S. C., Vargas-García, C., Singh, A. & Manuel, P. J. Pyecolib: a python library for simulating stochastic cell size dynamics. Phys. Biol. 20, 045006 (2023). Serbanescu, D., Ojkic, N. & Banerjee, S. Cellular resource allocation strategies for cell size and shape control in bacteria. FEBS J. 289, 7891–7906 (2022). Nieto, C. et al. Coupling cell size regulation and proliferation dynamics of C. glutamicum reveals cell division based on surface area. bioRxiv https://doi.org/10.1101/2023.12.26.573217 (2023). Nieto, C., Arias-Castro, J., Sánchez, C., Vargas-García, C. & Pedraza, J. M. Unification of cell division control strategies through continuous rate models. Phys. Rev. E 101, 022401 (2020). Sauls, J. T., Li, D. & Jun, S. Adder and a coarse-grained approach to cell size homeostasis in bacteria. Curr. Opin. Cell Biol. 38, 38–44 (2016). Knöppel, A., Broström, O., Gras, K., Elf, J. & Fange, D. Regulatory elements coordinating initiation of chromosome replication to the Escherichia coli cell cycle. Proc. Natl Acad. Sci. USA 120, e2213795120 (2023). Boesen, T. et al. Robust control of replication initiation in the absence of dnaa-atp-dnaa-adp regulatory elements in Escherichia coli. bioRxiv https://doi.org/10.1101/2022.09.08.507175 (2022). Tiruvadi-Krishnan, S. et al. Coupling between DNA replication, segregation, and the onset of constriction in Escherichia coli. Cell Rep 38, 110539 (2022). Le Treut, G., Si, F., Li, D. & Jun, S. Quantitative examination of five stochastic cell-cycle and cell-size control models for Escherichia coli and Bacillus subtilis. Front. Microbiol. 3278 (2021). Kohram, M., Vashistha, H., Leibler, S., Xue, B. & Salman, H. Bacterial growth control mechanisms inferred from multivariate statistical analysis of single-cell measurements. Curr. Biol. 31, 955–964 (2021). Sekar, K. et al. Synthesis and degradation of ftsz quantitatively predict the first cell division in starved bacteria. Mol. Syst. Biol. 14, e8623 (2018). Shi, H. et al. Precise regulation of the relative rates of surface area and volume synthesis in bacterial cells growing in dynamic environments. Nat. Commun. 12, 1975 (2021). Litsios, A. et al. Differential scaling between g1 protein production and cell size dynamics promotes commitment to the cell division cycle in budding yeast. Nat. Cell Biol. 21, 1382–1392 (2019). Miller, K. E., Vargas-Garcia, C., Singh, A. & Moseley, J. B. The fission yeast cell size control system integrates pathways measuring cell surface area, volume, and time. Curr. Biol. 33, 3312–3324 (2023). Nieto, C., Vargas-Garcia, C. A. & Singh, A. Statistical properties of dynamical models underlying cell size homeostasis. Tech. Rep., Center for Open Science (2023). Harris, L. K. & Theriot, J. A. Relative rates of surface and volume synthesis set bacterial cell size. Cell 165, 1479–1492 (2016). Zhang, Q., Zhang, Z. & Shi, H. Cell size is coordinated with cell cycle by regulating initiator protein dnaa in E. coli. Biophys. J. 119, 2537–2557 (2020). Speck, C. & Messer, W. Mechanism of origin unwinding: sequential binding of dnaa to double-and single-stranded dna. EMBO J. 20, 1469–1476 (2001) Schreiber, G., Ron, E. Z. & Glaser, G. ppgpp-mediated regulation of dna replication and cell division in Escherichia coli. Curr. Microbiol. 30, 27–32 (1995). Micali, G., Grilli, J., Osella, M. & Lagomarsino, M. C. Concurrent processes set E. coli cell division. Sci. Adv. 4, eaau3324 (2018). Genthon, A. Analytical cell size distribution: lineage-population bias and parameter inference. J. R. Soc. Interface 19, 20220405 (2022). Nieto, C., Vargas-Garcia, C. & Pedraza, J. M. Continuous rate modeling of bacterial stochastic size dynamics. Phys. Rev. E 104, 044415 (2021). Ghusinga, K. R., Dennehy, J. J. & Singh, A. First-passage time approach to controlling noise in the timing of intracellular events. Proc. Natl Acad. Sci. USA 114, 693–698 (2017). Sakamoto, Y., Ishiguro, M. & Kitagawa, G.Akaike Information Criterion Statistics. (D. Reidel, Dordrecht, Boston, 1986) vol. 81, 26853. Severini, T. A. Likelihood Methods in Statistics (Oxford University Press, 2000). Burnham, K. P. & Anderson, D. R. Multimodel inference: understanding aic and bic in model selection. Sociol. Methods Res. 33, 261–304 (2004). Nieto, C. Sizer-Like Division Analysis. https://doi.org/10.5281/ zenodo.3951080 (2023). Camberg, J. L., Hoskins, J. R. & Wickner, S. Clpxp protease degrades the cytoskeletal protein, ftsz, and modulates ftsz polymer dynamics. Proc. Natl Acad. Sci. USA 106, 10614–10619 (2009). Ho, P.-Y. & Amir, A. Simultaneous regulation of cell size and chromosome replication in bacteria. Front. Microbiol. 6, 662 (2015). Chen, J., Boyaci, H. & Campbell, E. A. Diverse and unified mechanisms of transcription initiation in bacteria. Nat. Rev. Microbiol. 19, 95–109 (2021). Sun, X.-M. et al. Size-dependent increase in rna polymerase II initiation rates mediates gene expression scaling with cell size. Curr. Biol. 30, 1217–1230 (2020). Kleckner, N. E., Chatzi, K., White, M. A., Fisher, J. K. & Stouf, M. Coordination of growth, chromosome replication/segregation, and cell division in E. coli. Front. Microbiol. 9, 1469 (2018). Ramkumar, N. & Baum, B. Coupling changes in cell shape to chromosome segregation. Nat. Rev. Mol. Cell Biol. 17, 511–521 (2016). Nieto, C. et al. The role of division stochasticity on the robustness of bacterial size dynamics. bioRxiv https://doi.org/10.1101/2022.07.27. 501776 (2022). ElGamel, M., Vashistha, H., Salman, H. & Mugler, A. Multigenerational memory in bacterial size control. Phys. Rev. E 108, L032401 (2023). Modi, S., Vargas-Garcia, C. A., Ghusinga, K. R. & Singh, A. Analysis of noise mechanisms in cell-size control. Biophys. J. 112, 2408–2418 (2017). Zheng, H. et al. General quantitative relations linking cell growth and the cell cycle in Escherichia coli. Nat. Microbiol. 5, 995–1001 (2020). Berger, M. & Wolde, P. R. T. Robust replication initiation from coupled homeostatic mechanisms. Nat. Commun. 13, 6556 (2022). Bakshi, S. et al. Tracking bacterial lineages in complex and dynamic environments with applications for growth control and persistence. Nat. Microbiol. 6, 783–791 (2021). Nieto, C., Vargas-García, C., Pedraza, J. M. & Singh, A. Modeling cell size control under dynamic environments. IFAC-PapersOnLine 55, 133–138 (2022). Atribución-NoComercial-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf application/pdf C.I Tibaitatá Nature Research Virginia (Estados Unidos) npj Systems Biology and Applications; Vol. 10, Núm. 61 (2024): npj Systems Biology and Applications (Mayo).
spellingShingle Investigación agropecuaria - A50
Escherichia coli
Biología molecular
Proteínas
Transversal
http://aims.fao.org/aos/agrovoc/c_33700
http://aims.fao.org/aos/agrovoc/c_4891
http://aims.fao.org/aos/agrovoc/c_13621
Nieto, César
Vargas García, César Augusto
Pedraza, Juan Manuel
Singh, Abhyudai
Mechanisms of cell size regulation in slow-growing Escherichia coli cells: discriminating models beyond the adder
title Mechanisms of cell size regulation in slow-growing Escherichia coli cells: discriminating models beyond the adder
title_full Mechanisms of cell size regulation in slow-growing Escherichia coli cells: discriminating models beyond the adder
title_fullStr Mechanisms of cell size regulation in slow-growing Escherichia coli cells: discriminating models beyond the adder
title_full_unstemmed Mechanisms of cell size regulation in slow-growing Escherichia coli cells: discriminating models beyond the adder
title_short Mechanisms of cell size regulation in slow-growing Escherichia coli cells: discriminating models beyond the adder
title_sort mechanisms of cell size regulation in slow growing escherichia coli cells discriminating models beyond the adder
topic Investigación agropecuaria - A50
Escherichia coli
Biología molecular
Proteínas
Transversal
http://aims.fao.org/aos/agrovoc/c_33700
http://aims.fao.org/aos/agrovoc/c_4891
http://aims.fao.org/aos/agrovoc/c_13621
url https://www.nature.com/articles/s41540-024-00383-z
http://hdl.handle.net/20.500.12324/41190
https://doi.org/10.1038/s41540-024-00383-z
work_keys_str_mv AT nietocesar mechanismsofcellsizeregulationinslowgrowingescherichiacolicellsdiscriminatingmodelsbeyondtheadder
AT vargasgarciacesaraugusto mechanismsofcellsizeregulationinslowgrowingescherichiacolicellsdiscriminatingmodelsbeyondtheadder
AT pedrazajuanmanuel mechanismsofcellsizeregulationinslowgrowingescherichiacolicellsdiscriminatingmodelsbeyondtheadder
AT singhabhyudai mechanismsofcellsizeregulationinslowgrowingescherichiacolicellsdiscriminatingmodelsbeyondtheadder