Integration of IoT Technologies and High-Performance Phenotyping for Climate Control in Greenhouses and Mitigation of Water Deficit: A Study of High-Andean Oat
Climate change has intensified droughts, severely impacting crops like oats and highlighting the need for effective adaptation strategies. In this context, the implementation of IoT-based climate control systems in greenhouses emerges as a promising solution for optimizing microclimates. These sy...
| Main Authors: | , , , |
|---|---|
| Format: | article |
| Language: | Inglés |
| Published: |
Multidisciplinary Digital Publishing Institute (MDPI)
2025
|
| Subjects: | |
| Online Access: | https://www.mdpi.com/2624-7402/6/4/227 http://hdl.handle.net/20.500.12324/41187 https://doi.org/10.3390/agriengineering6040227 |
| _version_ | 1854959132777381888 |
|---|---|
| author | Villagran, Edwin Toro Tobón, Gabriela Velázquez, Fabián Andrés Estrada Bonilla, German A. |
| author_browse | Estrada Bonilla, German A. Toro Tobón, Gabriela Velázquez, Fabián Andrés Villagran, Edwin |
| author_facet | Villagran, Edwin Toro Tobón, Gabriela Velázquez, Fabián Andrés Estrada Bonilla, German A. |
| author_sort | Villagran, Edwin |
| collection | Repositorio AGROSAVIA |
| description | Climate change has intensified droughts, severely impacting crops like oats and highlighting
the need for effective adaptation strategies. In this context, the implementation of IoT-based climate
control systems in greenhouses emerges as a promising solution for optimizing microclimates. These
systems allow for the precise monitoring and adjustment of critical variables such as temperature,
humidity, vapor pressure deficit (VPD), and photosynthetically active radiation (PAR), ensuring
optimal conditions for crop growth. During the experiment, the average daytime temperature was
22.6 ◦C and the nighttime temperature was 15.7 ◦C. The average relative humidity was 60%, with
a VPD of 0.46 kPa during the day and 1.26 kPa at night, while the PAR reached an average of
267 µmol m−2 s−1. Additionally, the use of high-throughput gravimetric phenotyping platforms
enabled precise data collection on the plant–soil–atmosphere relationship, providing exhaustive
control over water balance and irrigation. This facilitated the evaluation of the physiological response
of plants to abiotic stress. Inoculation with microbial consortia (PGPB) was used as a tool to mitigate
water stress. In this 69-day study, irrigation was suspended in specific treatments to simulate
drought, and it was observed that inoculated plants maintained chlorophyll b and carotenoid levels
akin to those of irrigated plants, indicating greater tolerance to water deficit. These plants also
exhibited greater efficiency in dissipating light energy and rapid recovery after rehydration. The
results underscore the potential of combining IoT monitoring technologies, advanced phenotyping
platforms, and microbial consortia to enhance crop resilience to climate change. |
| format | article |
| id | RepoAGROSAVIA41187 |
| institution | Corporación Colombiana de Investigación Agropecuaria |
| language | Inglés |
| publishDate | 2025 |
| publishDateRange | 2025 |
| publishDateSort | 2025 |
| publisher | Multidisciplinary Digital Publishing Institute (MDPI) |
| publisherStr | Multidisciplinary Digital Publishing Institute (MDPI) |
| record_format | dspace |
| spelling | RepoAGROSAVIA411872025-09-06T03:01:50Z Integration of IoT Technologies and High-Performance Phenotyping for Climate Control in Greenhouses and Mitigation of Water Deficit: A Study of High-Andean Oat Integration of IoT Technologies and High-Performance Phenotyping for Climate Control in Greenhouses and Mitigation of Water Deficit: A Study of High-Andean Oat Villagran, Edwin Toro Tobón, Gabriela Velázquez, Fabián Andrés Estrada Bonilla, German A. Conservación de la naturaleza y recursos de la tierra - P01 Mitigación del cambio climático Déficit hídrico Avena Agricultura sostenible Transitorios http://aims.fao.org/aos/agrovoc/c_1374571087594 http://aims.fao.org/aos/agrovoc/c_29112865 http://aims.fao.org/aos/agrovoc/c_5287 http://aims.fao.org/aos/agrovoc/c_33561 Climate change has intensified droughts, severely impacting crops like oats and highlighting the need for effective adaptation strategies. In this context, the implementation of IoT-based climate control systems in greenhouses emerges as a promising solution for optimizing microclimates. These systems allow for the precise monitoring and adjustment of critical variables such as temperature, humidity, vapor pressure deficit (VPD), and photosynthetically active radiation (PAR), ensuring optimal conditions for crop growth. During the experiment, the average daytime temperature was 22.6 ◦C and the nighttime temperature was 15.7 ◦C. The average relative humidity was 60%, with a VPD of 0.46 kPa during the day and 1.26 kPa at night, while the PAR reached an average of 267 µmol m−2 s−1. Additionally, the use of high-throughput gravimetric phenotyping platforms enabled precise data collection on the plant–soil–atmosphere relationship, providing exhaustive control over water balance and irrigation. This facilitated the evaluation of the physiological response of plants to abiotic stress. Inoculation with microbial consortia (PGPB) was used as a tool to mitigate water stress. In this 69-day study, irrigation was suspended in specific treatments to simulate drought, and it was observed that inoculated plants maintained chlorophyll b and carotenoid levels akin to those of irrigated plants, indicating greater tolerance to water deficit. These plants also exhibited greater efficiency in dissipating light energy and rapid recovery after rehydration. The results underscore the potential of combining IoT monitoring technologies, advanced phenotyping platforms, and microbial consortia to enhance crop resilience to climate change. Ministerio de Ciencia, Tecnología e Innovación de Colombia (MINCIENCIAS) Avena-Avena sativa 2025-09-05T13:54:55Z 2025-09-05T13:54:55Z 2024-10-29 2024 article Artículo científico http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 https://www.mdpi.com/2624-7402/6/4/227 2624-7402 http://hdl.handle.net/20.500.12324/41187 https://doi.org/10.3390/agriengineering6040227 reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA eng AgriEngineering 6 4 4011 4040 Gabric, A.J. The Climate Change Crisis: A Review of Its Causes and Possible Responses. Atmosphere 2023, 14, 1081. [CrossRef] Abd Rabuh, A.; Teeuw, R.M.; Oakey, D.R.; Argyriou, A.V.; Foxley-Marrable, M.; Wilkins, A. Sustainable Geoinformatic Approaches to Insurance for Small-Scale Farmers in Colombia. Sustainability 2024, 16, 5104. [CrossRef] Klongdee, S.; Netinant, P.; Rukhiran, M. Evaluating the Impact of Controlled Ultraviolet Light Intensities on the Growth of Kale Using IoT-Based Systems. IoT 2024, 5, 449–477. [CrossRef] de Souza, E.B.; Silva, B.C.S.; Serra, E.M.F.; Ruiz, M.J.B.; Cunha, A.C.; Souza, P.J.P.O.; Pezzi, L.P.; da Rocha, E.J.P.; Sousa, A.M.L.; Silva, J.d.A., Jr. Small Municipalities in the Amazon under the Risk of Future Climate Change. Climate 2024, 12, 95. [CrossRef] Rugienius, R.; Bendokas, V.; Siksnianas, T.; Stanys, V.; Sasnauskas, A.; Kazanaviciute, V. Characteristics of Fragaria Vesca Yield Parameters and Anthocyanin Accumulation under Water Deficit Stress. Plants 2021, 10, 557. [CrossRef] Oguz, M.C.; Aycan, M.; Oguz, E.; Poyraz, I.; Yildiz, M. Drought Stress Tolerance in Plants: Interplay of Molecular, Biochemical and Physiological Responses in Important Development Stages. Physiologia 2022, 2, 180–197. [CrossRef] Hasanuzzaman, M.; Hakim, K.; Nahar, K.; Alharby, H.F. Plant Abiotic Stress Tolerance; Bhuyan, M.H.M.B., Hasanuzzaman, M., Nahar, K., Mahmud, J.A., Parvin, K., Bhuiyan, T.F., Fujita, M., Eds.; Springer: Cham, Switzerland, 2019. Tarafdar, M.; Bahadur, V.; Rana, S.; Singh, R.K. A Review: Abiotic Stress on Transpiration, Stomatal Diffusive Resistance and Photosynthetic Rate. Pharma Innov. J. 2022, 11, 1632–1635. Zia, R.; Nawaz, M.S.; Siddique, M.J.; Hakim, S.; Imran, A. Plant Survival under Drought Stress: Implications, Adaptive Responses, and Integrated Rhizosphere Management Strategy for Stress Mitigation. Microbiol. Res. 2021, 242, 126626. [CrossRef] Canales, F.J.; Rispail, N.; García-Tejera, O.; Arbona, V.; Pérez-de-Luque, A.; Prats, E. Drought Resistance in Oat Involves ABA-Mediated Modulation of Transpiration and Root Hydraulic Conductivity. Environ. Exp. Bot. 2021, 182, 104333. [CrossRef] Li, S.-X.; Wang, Z.-H.; Malhi, S.S.; Li, S.-Q.; Gao, Y.-J.; Tian, X.-H. Nutrient and Water Management Effects on Crop Production, and Nutrient and Water Use Efficiency in Dryland Areas of China. Adv. Agron. 2009, 102, 223–265. Singh, E.; Pratap, A.; Mehta, U.; Azid, S.I. Smart Agriculture Drone for Crop Spraying Using Image-Processing and Machine Learning Techniques: Experimental Validation. IoT 2024, 5, 250–270. [CrossRef] Maraveas, C.; Bartzanas, T. Application of Internet of Things (IoT) for Optimized Greenhouse Environments. AgriEngineering 2021, 3, 954–970. [CrossRef] Ortiz, G.A.; Chamorro, A.N.; Acuña-Caita, J.F.; López-Cruz, I.L.; Villagran, E. Calibration and Implementation of a Dynamic Energy Balance Model to Estimate the Temperature in a Plastic-Covered Colombian Greenhouse. AgriEngineering 2023, 5, 2284–2302. [CrossRef] Rayhana, R.; Xiao, G.; Liu, Z. Internet of Things Empowered Smart Greenhouse Farming. IEEE J. Radio Freq. Identif. 2020, 4, 195–211. [CrossRef] Lova Raju, K.; Vijayaraghavan, V. IoT Technologies in Agricultural Environment: A Survey. Wirel. Pers. Commun. 2020, 113, 2415–2446. [CrossRef] Sagheer, A.; Mohammed, M.; Riad, K.; Alhajhoj, M. A Cloud-Based IoT Platform for Precision Control of Soilless Greenhouse Cultivation. Sensors 2020, 21, 223. [CrossRef] Volosciuc, C.; Bogdan, R.; Blajovan, B.; Stângaciu, C.; Marcu, M. GreenLab, an IoT-Based Small-Scale Smart Greenhouse. Future Internet 2024, 16, 195. [CrossRef] Khandebharad, R.; Garad, S.; Garad, A.; Moholkar, S.; Daphale, D. IOT-Based Monitoring and Control System for Greenhouses. In Proceedings of the Techno-Societal 2016, International Conference on Advanced Technologies for Societal Applications, Mumbai, India, 9–10 December 2022; Springer: Cham, Switzerland, 2022; pp. 225–232. Shamshiri, R.R.; Bojic, I.; van Henten, E.; Balasundram, S.K.; Dworak, V.; Sultan, M.; Weltzien, C. Model-Based Evaluation of Greenhouse Microclimate Using IoT-Sensor Data Fusion for Energy Efficient Crop Production. J. Clean. Prod. 2020, 263, 121303. [CrossRef] Nurpilihan, B.; Asmara, S. Application of Internet of Things (IoT) on Microclimate Monitoring System in the ALG Unpad Greenhouse Based on Raspberry Pi. Tek. Pertan. Lampung 2022, 11, 518–530. Singh, N.; Sharma, A.K.; Sarkar, I.; Prabhu, S.; Chadaga, K. IoT-Based Greenhouse Technologies for Enhanced Crop Production: A Comprehensive Study of Monitoring, Control, and Communication Techniques. Syst. Sci. Control Eng. 2024, 12, 2306825. [CrossRef] Yuan, H.; Song, M.; Liu, Y.; Xie, Q.; Cao, W.; Zhu, Y.; Ni, J. Field Phenotyping Monitoring Systems for High-Throughput: A Survey of Enabling Technologies, Equipment, and Research Challenges. Agronomy 2023, 13, 2832. [CrossRef] Bar-On, L.; Zeron, Y.; Sade, N.; Avni, A.; Shacham-Diamand, Y. Examination of Plant Physiological Monitoring Alongside In-Vivo Four-Point-Probe Impedance Spectroscopy of Live Tobacco Plants. In Proceedings of the 2023 IEEE Conference on AgriFood Electronics (CAFE), Torino, Italy, 25–27 September 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–4. Chenu, K.; Van Oosterom, E.J.; McLean, G.; Deifel, K.S.; Fletcher, A.; Geetika, G.; Tirfessa, A.; Mace, E.S.; Jordan, D.R.; Sulman, R. Integrating Modelling and Phenotyping Approaches to Identify and Screen Complex Traits: Transpiration Efficiency in Cereals. J. Exp. Bot. 2018, 69, 3181–3194. [CrossRef] [PubMed] Sun, T.; Cheng, R.; Jiang, R.; Liu, Y.; Sun, Y.; Wang, Z.; Fang, P.; Wu, X.; Ning, K.; Xu, P. Combining Functional Physiological Phenotyping and Simulation Model to Estimate Dynamic Water Use Efficiency and Infer Transpiration Sensitivity Traits. Eur. J. Agron. 2023, 150, 126955. [CrossRef] Dalal, A.; Shenhar, I.; Bourstein, R.; Mayo, A.; Grunwald, Y.; Averbuch, N.; Attia, Z.; Wallach, R.; Moshelion, M. A Telemetric, Gravimetric Platform for Real-Time Physiological Phenotyping of Plant–Environment Interactions. JoVE J. Vis. Exp. 2020, 162, e61280. Li, Y.; Wu, X.; Xu, W.; Sun, Y.; Wang, Y.; Li, G.; Xu, P. High-Throughput Physiology-Based Stress Response Phenotyping: Advantages, Applications and Prospective in Horticultural Plants. Hortic. Plant J. 2021, 7, 181–187. [CrossRef] Illouz-Eliaz, N.; Nissan, I.; Nir, I.; Ramon, U.; Shohat, H.; Weiss, D. Mutations in the Tomato Gibberellin Receptors Suppress Xylem Proliferation and Reduce Water Loss under Water-Deficit Conditions. J. Exp. Bot. 2020, 71, 3603–3612. [CrossRef] Sacco Botto, C.; Mati´c, S.; Moine, A.; Chitarra, W.; Nerva, L.; D’Errico, C.; Pagliarani, C.; Noris, E. Tomato Yellow Leaf Curl Sardinia Virus Increases Drought Tolerance of Tomato. Int. J. Mol. Sci. 2023, 24, 2893. [CrossRef] Uni, D.; Sheffer, E.; Klein, T.; Shem-Tov, R.; Segev, N.; Winters, G. Responses of Two Acacia Species to Drought Suggest Different Water-Use Strategies, Reflecting Their Topographic Distribution. Front. Plant Sci. 2023, 14, 1154223. [CrossRef] Jaramillo Roman, V.; van de Zedde, R.; Peller, J.; Visser, R.G.F.; van der Linden, C.G.; van Loo, E.N. High-Resolution Analysis of Growth and Transpiration of Quinoa under Saline Conditions. Front. Plant Sci. 2021, 12, 634311. [CrossRef] Poria, V.; D˛ebiec-Andrzejewska, K.; Fiodor, A.; Lyzohub, M.; Ajijah, N.; Singh, S.; Pranaw, K. Plant Growth-Promoting Bacteria (PGPB) Integrated Phytotechnology: A Sustainable Approach for Remediation of Marginal Lands. Front. Plant Sci. 2022, 13, 999866. [CrossRef] Cortés-Patiño, S.; Vargas, C.D.; Alvarez-Flórez, F.; Estrada-Bonilla, G. Co-Inoculation of Plant-Growth-Promoting Bacteria Modulates Physiological and Biochemical Responses of Perennial Ryegrass to Water Deficit. Plants 2022, 11, 2543. [Google Scholar] [CrossRef] [PubMed] Vimal, S.R.; Singh, J.S.; Arora, N.K.; Singh, S. Soil-Plant-Microbe Interactions in Stressed Agriculture Management: A Review. Pedosphere 2017, 27, 177–192. [Google Scholar] [CrossRef] Naik, K.; Mishra, S.; Srichandan, H.; Singh, P.K.; Sarangi, P.K. Plant Growth Promoting Microbes: Potential Link to Sustainable Agriculture and Environment. Biocatal. Agric. Biotechnol. 2019, 21, 101326. [Google Scholar] [CrossRef] Yang, Y.; Guo, Y. Unraveling Salt Stress Signaling in Plants. J. Integr. Plant Biol. 2018, 60, 796–804. [Google Scholar] [CrossRef] Chai, Y.N.; Schachtman, D.P. Root Exudates Impact Plant Performance under Abiotic Stress. Trends Plant Sci. 2022, 27, 80–91. [Google Scholar] [CrossRef] Akhtar, M.N.; Balodi, R.; Ghatak, A. Microbe-Mediated Mitigation of Plant Stress. In Microbial Services in Restoration Ecology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 271–282. [Google Scholar] Kim, T.; Park, H.; Baek, J.; Kim, M.; Im, D.; Park, H.; Shin, D.; Shin, D. Enhancement for Greenhouse Sustainability Using Tomato Disease Image Classification System Based on Intelligent Complex Controller. Sustainability 2023, 15, 16220. [Google Scholar] [CrossRef] Soussi, M.; Chaibi, M.T.; Buchholz, M.; Saghrouni, Z. Comprehensive Review on Climate Control and Cooling Systems in Greenhouses under Hot and Arid Conditions. Agronomy 2022, 12, 626. [Google Scholar] [CrossRef] Pardo-Pina, S.; Ferrández-Pastor, J.; Rodríguez, F.; Cámara-Zapata, J.M. Analysis of an Evaporative Cooling Pad Connected to an Air Distribution System of Perforated Polyethylene Tubes in a Greenhouse. Agronomy 2024, 14, 1187. [Google Scholar] [CrossRef] Kittas, C.; Katsoulas, N.; Bartzanas, T. Greenhouse Climate Control in Mediterranean Greenhouses. Cuad. Estud. Agroaliment. 2012, 3, 89–114. [Google Scholar] Dalal, A.; Shenhar, I.; Bourstein, R.; Mayo, A.; Grunwald, Y.; Averbuch, N.; Attia, Z.; Wallach, R.; Moshelion, M. A High-Throughput Gravimetric Phenotyping Platform for Real-Time Physiological Screening of Plant–Environment Dynamic Responses. BioRxiv 2020, 2001–2020. [Google Scholar] [CrossRef] Dewi, E.S.; Abdulai, I.; Bracho-Mujica, G.; Appiah, M.; Rötter, R.P. Agronomic and Physiological Traits Response of Three Tropical Sorghum (Sorghum bicolor L.) Cultivars to Drought and Salinity. Agronomy 2023, 13, 2788. [Google Scholar] [CrossRef] Bejarano-Herrera, W.F.; Marcillo-Paguay, C.A.; Rojas-Tapias, D.F.; Estrada-Bonilla, G.A. Effect of Mineral Fertilization and Microbial Inoculation on Cabbage Yield and Nutrition: A Field Experiment. Agronomy 2024, 14, 210. [Google Scholar] [CrossRef] Dalal, A.; Bourstein, R.; Haish, N.; Shenhar, I.; Wallach, R.; Moshelion, M. Dynamic Physiological Phenotyping of Drought-Stressed Pepper Plants Treated with “Productivity-Enhancing” and “Survivability-Enhancing” Biostimulants. Front. Plant Sci. 2019, 10, 905. [Google Scholar] [CrossRef] [PubMed] Appiah, M.; Abdulai, I.; Schulman, A.H.; Moshelion, M.; Dewi, E.S.; Daszkowska-Golec, A.; Bracho-Mujica, G.; Rötter, R.P. Drought Response of Water-Conserving and Non-Conserving Spring Barley Cultivars. Front. Plant Sci. 2023, 14, 1247853. [Google Scholar] [CrossRef] Paul, M.; Dalal, A.; Jääskeläinen, M.; Moshelion, M.; Schulman, A.H. Precision Phenotyping of a Barley Diversity Set Reveals Distinct Drought Response Strategies. Front. Plant Sci. 2024, 15, 1393991. [Google Scholar] [CrossRef] Pérez-López, U.; Robredo, A.; Lacuesta, M.; Muñoz-Rueda, A.; Mena-Petite, A. Atmospheric CO2 Concentration Influences the Contributions of Osmolyte Accumulation and Cell Wall Elasticity to Salt Tolerance in Barley Cultivars. J. Plant Physiol. 2010, 167, 15–22. [Google Scholar] [CrossRef] Wellburn, A.R. The Spectral Determination of Chlorophylls a and b, as Well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef] Akrami, M.; Salah, A.H.; Javadi, A.A.; Fath, H.E.S.; Hassanein, M.J.; Farmani, R.; Dibaj, M.; Negm, A. Towards a Sustainable Greenhouse: Review of Trends and Emerging Practices in Analysing Greenhouse Ventilation Requirements to Sustain Maximum Agricultural Yield. Sustainability 2020, 12, 2794. [Google Scholar] [CrossRef] Villagrán-Munar, E.A.; Bojacá-Aldana, C.R. CFD Simulation of the Increase of the Roof Ventilation Area in a Traditional Colombian Greenhouse: Effect on Air Flow Patterns and Thermal Behavior. Int. J. Heat Technol. 2019, 37, 881–892. [Google Scholar] [CrossRef] Rocha, G.A.O.; Pichimata, M.A.; Villagran, E. Research on the Microclimate of Protected Agriculture Structures Using Numerical Simulation Tools: A Technical and Bibliometric Analysis as a Contribution to the Sustainability of Under-Cover Cropping in Tropical and Subtropical Countries. Sustainability 2021, 13, 10433. [Google Scholar] [CrossRef] Chen, T.-H.; Lee, M.-H.; Hsia, I.-W.; Hsu, C.-H.; Yao, M.-H.; Chang, F.-J. Develop a Smart Microclimate Control System for Greenhouses through System Dynamics and Machine Learning Techniques. Water 2022, 14, 3941. [Google Scholar] [CrossRef] Bournet, P.E.; Boulard, T. Effect of Ventilator Configuration on the Distributed Climate of Greenhouses: A Review of Experimental and CFD Studies. Comput. Electron. Agric. 2010, 74, 195–217. [Google Scholar] [CrossRef] Mitro, N.; Krommyda, M.; Amditis, A. Smart Tags: IoT Sensors for Monitoring the Micro-Climate of Cultural Heritage Monuments. Appl. Sci. 2022, 12, 2315. [Google Scholar] [CrossRef] Seginer, I. Sub-Optimal Control of the Greenhouse Environment: Crop Models with and without an Assimilates Buffer. Biosyst. Eng. 2022, 221, 236–257. [Google Scholar] [CrossRef] Wang, J.; Lee, W.F.; Ling, P.P. Estimation of Thermal Diffusivity for Greenhouse Soil Temperature Simulation. Appl. Sci. 2020, 10, 653. [Google Scholar] [CrossRef] Villagrán-Munar, E.A.; Bojacá-Aldana, C.R. Determinación Del Comportamiento Térmico de Un Invernadero Colgante Colombiano Aplicando Simulación CFD. Rev. Cienc. Técnicas Agropecu. 2019, 28, 1–11. [Google Scholar] Villagran, E.; Bojacá, C. Analysis of the Microclimatic Behavior of a Greenhouse Used to Produce Carnation (Dianthus caryophyllus L.). Ornam. Hortic. 2020, 26, 109–204. [Google Scholar] [CrossRef] Villagrán-Munar, E.A.; Bojacá-Aldana, C.R. Numerical Evaluation of Passive Strategies for Nocturnal Climate Optimization in a Greenhouse Designed for Rose Production (Rosa spp.). Ornam. Hortic. 2019, 25, 351–364. [Google Scholar] [CrossRef] Garavito, J. El Clima de Bogotá. Rev. Acad. Colomb. Cienc. Exactas Físicas Nat. 2020, 44, 43–54. [Google Scholar] Liu, H.; Yin, C.; Hu, X.; Tanny, J.; Tang, X. Microclimate Characteristics and Evapotranspiration Estimates of Cucumber Plants in a Newly Developed Sunken Solar Greenhouse. Water 2020, 12, 2275. [Google Scholar] [CrossRef] Gourdo, L.; Fatnassi, H.; Bouharroud, R.; Ezzaeri, K.; Bazgaou, A.; Wifaya, A.; Demrati, H.; Bekkaoui, A.; Aharoune, A.; Poncet, C.; et al. Heating Canarian Greenhouse with a Passive Solar Water–Sleeve System: Effect on Microclimate and Tomato Crop Yield. Sol. Energy 2019, 188, 1349–1359. [Google Scholar] [CrossRef] Aragón-Moreno, J.A.; Serna-Castaño, E.D.; Solano-Romero, D.S. Estudio Climatológico de Los Vientos Para La Ciudad de Bogotá En El Periodo 2010–2016. Entramado 2019, 15, 286–307. [Google Scholar] [CrossRef] Martinez, O.G.; Noe-Dobrea, I. Agrometeorology in Colombia. In Agroclimate Information for Development; Routledge: London, UK, 2022; pp. 269–275. [Google Scholar] Salinas-Velandia, D.A.; Romero-Perdomo, F.; Numa-Vergel, S.; Villagrán, E.; Donado-Godoy, P.; Galindo-Pacheco, J.R. Insights into Circular Horticulture: Knowledge Diffusion, Resource Circulation, One Health Approach, and Greenhouse Technologies. Int. J. Environ. Res. Public Health 2022, 19, 12053. [Google Scholar] [CrossRef] [PubMed] Baeza, E.J.; Pérez-Parra, J.; Montero, J.I. Effect of Ventilator Size on Natural Ventilation in Parral Greenhouse by Means of CFD Simulations. Acta Hortic. 2005, 691, 465–472. [Google Scholar] [CrossRef] Peña-Fernández, A.; Colón-Reynoso, M.A.; Mazuela, P. Geometric Analysis of Greenhouse Roofs for Energy Efficiency Optimization and Condensation Drip Reduction. Agriculture 2024, 14, 216. [Google Scholar] [CrossRef] Bazgaou, A.; Fatnassi, H.; Bouharroud, R.; Tiskatine, R.; Wifaya, A.; Demrati, H.; Bammou, L.; Aharoune, A.; Bouirden, L. CFD Modeling of the Microclimate in a Greenhouse Using a Rock Bed Thermal Storage Heating System. Horticulturae 2023, 9, 183. [Google Scholar] [CrossRef] Vanthoor, B.H.E.; Stanghellini, C.; van Henten, E.J.; de Visser, P.H.B. A Methodology for Model-Based Greenhouse Design: Part 1, a Greenhouse Climate Model for a Broad Range of Designs and Climates. Biosyst. Eng. 2011, 110, 363–377. [Google Scholar] [CrossRef] Barreto-Salazar, L.E.; Rochín-Medina, J.J.; Rubio-Astorga, G.J.; Santos-Ballardo, D.U.; Picos-Ponce, J.C. Evaluation of Serrano Pepper Crops Growth under Controlled Conditions of Vapor Pressure Deficit in a Pilot-Scale Hydroponic Greenhouse. Processes 2023, 11, 3408. [Google Scholar] [CrossRef] Paskhin, M.O.; Yanykin, D.V.; Gudkov, S. V Current Approaches to Light Conversion for Controlled Environment Agricultural Applications: A Review. Horticulturae 2022, 8, 885. [Google Scholar] [CrossRef] Montero, J.I.; Muñoz, P.; Sánchez-Guerrero, M.C.; Medrano, E.; Piscia, D.; Lorenzo, P. Shading Screens for the Improvement of the Night Time Climate of Unheated Greenhouses. Span. J. Agric. Res. 2013, 11, 32. [Google Scholar] [CrossRef] Campuzano, L.F.; Rincón, E.C.; Sierra, J.C.; Cuesta, D.T.; Sierra, D.F.N.; Lopez, P.A.P. Altoandina: Nueva Variedad de Avena Forrajera Para La Zona Andina En Colombia. Agron. Mesoam. 2020, 31, 581–595. [Google Scholar] [CrossRef] Piscia, D.; Montero, J.I.; Baeza, E.; Bailey, B.J. A CFD Greenhouse Night-Time Condensation Model. Biosyst. Eng. 2012, 111, 141–154. [Google Scholar] [CrossRef] Sulman, B.N.; Roman, D.T.; Yi, K.; Wang, L.; Phillips, R.P.; Novick, K.A. High Atmospheric Demand for Water Can Limit Forest Carbon Uptake and Transpiration as Severely as Dry Soil. Geophys. Res. Lett. 2016, 43, 9686–9695. [Google Scholar] [CrossRef] Baxevanou, C.; Fidaros, D.; Bartzanas, T.; Kittas, C. Numerical Simulation of Solar Radiation, Air Flow and Temperature Distribution in a Naturally Ventilated Tunnel Greenhouse. Agric. Eng. Int. CIGR J. 2010, 12, 48–67. [Google Scholar] Konopacki, P.J.; Treder, W.; Klamkowski, K. Comparison of Vapour Pressure Deficit Patterns during Cucumber Cultivation in a Traditional High PE Tunnel Greenhouse and a Tunnel Greenhouse Equipped with a Heat Accumulator. Span. J. Agric. Res. 2018, 16, e0201. [Google Scholar] [CrossRef] McAdam, S.A.M.; Brodribb, T.J. The Evolution of Mechanisms Driving the Stomatal Response to Vapor Pressure Deficit. Plant Physiol. 2015, 167, 833–843. [Google Scholar] [CrossRef] [PubMed] Zhang, P.; Yang, X.; Manevski, K.; Li, S.; Wei, Z.; Andersen, M.N.; Liu, F. Physiological and Growth Responses of Potato (Solanum tuberosum L.) to Air Temperature and Relative Humidity under Soil Water Deficits. Plants 2022, 11, 1126. [Google Scholar] [CrossRef] Inada, K. Action Spectra for Photosynthesis in Higher Plants. Plant Cell Physiol. 1976, 17, 355–365. [Google Scholar] Perez Martinez, L.V.; Melgarejo, L.M. Photosynthetic Performance and Leaf Water Potential of Gulupa (Passiflora Edulis Sims, Passifloraceae) in the Reproductive Phase in Three Locations in the Colombian Andes. Acta Biol. Colomb. 2015, 20, 183–194. [Google Scholar] [CrossRef] Di Mola, I.; Conti, S.; Bartak, M.; Cozzolino, E.; Ottaiano, L.; Giordano, D.; Melchionna, G.; Mormile, P.; Rippa, M.; Beltrame, L. Greenhouse Photoluminescent PMMA Panels Improve the Agronomical and Physiological Performances of Lettuce (Lactuca sativa L.). Horticulturae 2022, 8, 913. [Google Scholar] [CrossRef] Chiang, C.; Bånkestad, D.; Hoch, G. Reaching Natural Growth: Light Quality Effects on Plant Performance in Indoor Growth Facilities. Plants 2020, 9, 1273. [Google Scholar] [CrossRef] [PubMed] Flores-Velázquez, J.; López-Cruz, I.L.; Mejía-Sáenz, E.; Montero, J.I. Evaluación Del Desempeño Climático de Un Invernadero Baticenital Del Centro de México Mediante Dinámica de Fluidos Computacional (CFD). Agrociencia 2014, 48, 131–146. [Google Scholar] Piscia, D.; Montero, J.I.; Bailey, B.; Muñoz, P.; Oliva, A. A New Optimisation Methodology Used to Study the Effect of Cover Properties on Night-Time Greenhouse Climate. Biosyst. Eng. 2013, 116, 130–143. [Google Scholar] [CrossRef] Ghani, S.; Bakochristou, F.; ElBialy, E.M.A.A.; Gamaledin, S.M.A.; Rashwan, M.M.; Abdelhalim, A.M.; Ismail, S.M. Design Challenges of Agricultural Greenhouses in Hot and Arid Environments–A Review. Eng. Agric. Environ. Food 2019, 12, 48–70. [Google Scholar] [CrossRef] Alemu, M.D.; Barak, V.; Shenhar, I.; Batat, D.; Saranga, Y. Dynamic Physiological Response of Tef to Contrasting Water Availabilities. Front. Plant Sci. 2024, 15, 1406173. [Google Scholar] [CrossRef] Cao, M.; Narayanan, M.; Shi, X.; Chen, X.; Li, Z.; Ma, Y. Optimistic Contributions of Plant Growth-Promoting Bacteria for Sustainable Agriculture and Climate Stress Alleviation. Environ. Res. 2023, 217, 114924. [Google Scholar] [CrossRef] Vurukonda, S.S.K.P.; Vardharajula, S.; Shrivastava, M.; SkZ, A. Enhancement of Drought Stress Tolerance in Crops by Plant Growth Promoting Rhizobacteria. Microbiol. Res. 2016, 184, 13–24. [Google Scholar] [CrossRef] Cortes-Patino, S.; Vargas, C.; Álvarez-Flórez, F.; Bonilla, R.; Estrada-Bonilla, G. Potential of Herbaspirillum and Azospirillum Consortium to Promote Growth of Perennial Ryegrass under Water Deficit. Microorganisms 2021, 9, 91. [Google Scholar] [CrossRef] Arruda, B.; Bejarano-Herrera, W.F.; Ortega-Cepeda, M.C.; Campo-Quesada, J.M.; Toro-Tobón, G.; Estrada-Bonilla, G.A.; Silva, A.M.M.; Ferrari Putti, F. Bioinput Inoculation in Common Beans to Mitigate Stresses Caused by a Period of Drought. Stresses 2023, 3, 842–857. [Google Scholar] [CrossRef] Chauhan, H.; Bagyaraj, D.J. Inoculation with Selected Microbial Consortia Not Only Enhances Growth and Yield of French Bean but Also Reduces Fertilizer Application under Field Condition. Sci. Hortic. 2015, 197, 441–446. [Google Scholar] [CrossRef] Toro-Tobón, G.; Alvarez-Flórez, F.; Mariño-Blanco, H.D.; Melgarejo, L.M. Foliar Functional Traits of Resource Island-Forming Nurse Tree Species from a Semi-Arid Ecosystem of La Guajira, Colombia. Plants 2022, 11, 1723. [Google Scholar] [CrossRef] [PubMed] Vishnupradeep, R.; Bruno, L.B.; Taj, Z.; Karthik, C.; Challabathula, D.; Kumar, A.; Freitas, H.; Rajkumar, M. Plant Growth Promoting Bacteria Improve Growth and Phytostabilization Potential of Zea Mays under Chromium and Drought Stress by Altering Photosynthetic and Antioxidant Responses. Environ. Technol. Innov. 2022, 25, 102154. [Google Scholar] [CrossRef] Rossi, M.; Borromeo, I.; Capo, C.; Glick, B.R.; Del Gallo, M.; Pietrini, F.; Forni, C. PGPB Improve Photosynthetic Activity and Tolerance to Oxidative Stress in Brassica Napus Grown on Salinized Soils. Appl. Sci. 2021, 11, 11442. [Google Scholar] [CrossRef] Abdelaal, K.; AlKahtani, M.; Attia, K.; Hafez, Y.; Király, L.; Künstler, A. The Role of Plant Growth-Promoting Bacteria in Alleviating the Adverse Effects of Drought on Plants. Biology 2021, 10, 520. [Google Scholar] [CrossRef] [PubMed] Izuhara, T.; Kaihatsu, I.; Jimbo, H.; Takaichi, S.; Nishiyama, Y. Elevated Levels of Specific Carotenoids during Acclimation to Strong Light Protect the Repair of Photosystem II in Synechocystis sp. PCC 6803. Front. Plant Sci. 2020, 11, 1030. [Google Scholar] [CrossRef] Maxwell, K.; Johnson, G.N. Chlorophyll Fluorescence—A Practical Guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef] Atribución-NoComercial-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf application/pdf C.I Tibaitatá Colombia Multidisciplinary Digital Publishing Institute (MDPI) Basel (Switzerland) AgriEngineering; Vol. 6, Núm. 4 (2024): AgriEngineering (Octubre);p. 4011 -4040. |
| spellingShingle | Conservación de la naturaleza y recursos de la tierra - P01 Mitigación del cambio climático Déficit hídrico Avena Agricultura sostenible Transitorios http://aims.fao.org/aos/agrovoc/c_1374571087594 http://aims.fao.org/aos/agrovoc/c_29112865 http://aims.fao.org/aos/agrovoc/c_5287 http://aims.fao.org/aos/agrovoc/c_33561 Villagran, Edwin Toro Tobón, Gabriela Velázquez, Fabián Andrés Estrada Bonilla, German A. Integration of IoT Technologies and High-Performance Phenotyping for Climate Control in Greenhouses and Mitigation of Water Deficit: A Study of High-Andean Oat |
| title | Integration of IoT Technologies and High-Performance Phenotyping for Climate Control in Greenhouses and Mitigation of Water Deficit: A Study of High-Andean Oat |
| title_full | Integration of IoT Technologies and High-Performance Phenotyping for Climate Control in Greenhouses and Mitigation of Water Deficit: A Study of High-Andean Oat |
| title_fullStr | Integration of IoT Technologies and High-Performance Phenotyping for Climate Control in Greenhouses and Mitigation of Water Deficit: A Study of High-Andean Oat |
| title_full_unstemmed | Integration of IoT Technologies and High-Performance Phenotyping for Climate Control in Greenhouses and Mitigation of Water Deficit: A Study of High-Andean Oat |
| title_short | Integration of IoT Technologies and High-Performance Phenotyping for Climate Control in Greenhouses and Mitigation of Water Deficit: A Study of High-Andean Oat |
| title_sort | integration of iot technologies and high performance phenotyping for climate control in greenhouses and mitigation of water deficit a study of high andean oat |
| topic | Conservación de la naturaleza y recursos de la tierra - P01 Mitigación del cambio climático Déficit hídrico Avena Agricultura sostenible Transitorios http://aims.fao.org/aos/agrovoc/c_1374571087594 http://aims.fao.org/aos/agrovoc/c_29112865 http://aims.fao.org/aos/agrovoc/c_5287 http://aims.fao.org/aos/agrovoc/c_33561 |
| url | https://www.mdpi.com/2624-7402/6/4/227 http://hdl.handle.net/20.500.12324/41187 https://doi.org/10.3390/agriengineering6040227 |
| work_keys_str_mv | AT villagranedwin integrationofiottechnologiesandhighperformancephenotypingforclimatecontrolingreenhousesandmitigationofwaterdeficitastudyofhighandeanoat AT torotobongabriela integrationofiottechnologiesandhighperformancephenotypingforclimatecontrolingreenhousesandmitigationofwaterdeficitastudyofhighandeanoat AT velazquezfabianandres integrationofiottechnologiesandhighperformancephenotypingforclimatecontrolingreenhousesandmitigationofwaterdeficitastudyofhighandeanoat AT estradabonillagermana integrationofiottechnologiesandhighperformancephenotypingforclimatecontrolingreenhousesandmitigationofwaterdeficitastudyofhighandeanoat |