Validation of enteric methane emissions by cattle estimated from mathematical models using data from in vivo experiments

Several authors have developed equations to estimate methane (CH4) emissions by cattle according to variables such as dry matter and nutrient intake, live weight, or weight gain. Mathematical models using these variables show a large variability of results, being necessary to identify those which pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Molina Botero, Isabel, Díaz Céspedes, Medardo, Mayorga Mogollón, Olga, Ku Vera, Juan, Arceo Castillo, Jeyder, Montoya Flores, María Denisse, Arango, Jacobo, Gómez Bravo, Carlos
Formato: article
Lenguaje:Inglés
Publicado: Eduem - Editora da Universidade Estadual de Maringa 2025
Materias:
Acceso en línea:https://periodicos.uem.br/ojs/index.php/ActaSciAnimSci/article/view/69328
http://hdl.handle.net/20.500.12324/41162
https://doi.org/10.4025/actascianimsci.v47i1.69328
id RepoAGROSAVIA41162
record_format dspace
institution Corporación Colombiana de Investigación Agropecuaria
collection Repositorio AGROSAVIA
language Inglés
topic Genética y mejoramiento animal - L10
Ganado bovino
Metano
Matemática
Mejoramiento genético
Ganadería y especies menores
http://aims.fao.org/aos/agrovoc/c_1391
http://aims.fao.org/aos/agrovoc/c_4784
http://aims.fao.org/aos/agrovoc/c_4649
http://aims.fao.org/aos/agrovoc/c_11119
spellingShingle Genética y mejoramiento animal - L10
Ganado bovino
Metano
Matemática
Mejoramiento genético
Ganadería y especies menores
http://aims.fao.org/aos/agrovoc/c_1391
http://aims.fao.org/aos/agrovoc/c_4784
http://aims.fao.org/aos/agrovoc/c_4649
http://aims.fao.org/aos/agrovoc/c_11119
Molina Botero, Isabel
Díaz Céspedes, Medardo
Mayorga Mogollón, Olga
Ku Vera, Juan
Arceo Castillo, Jeyder
Montoya Flores, María Denisse
Arango, Jacobo
Gómez Bravo, Carlos
Validation of enteric methane emissions by cattle estimated from mathematical models using data from in vivo experiments
description Several authors have developed equations to estimate methane (CH4) emissions by cattle according to variables such as dry matter and nutrient intake, live weight, or weight gain. Mathematical models using these variables show a large variability of results, being necessary to identify those which provide more precise and accurate predictions. For this reason, the objective of this study was to validate enteric CH4 emissions estimated from mathematical models through a comparison with a database of CH4 emissions obtained from cattle experiments carried out in tropical regions. A database of 495 individual cattle CH4 emissions data (g day-1) obtained from 19 studies in three tropical Latin American countries was built for this study. Results showed that mathematical models developed for cattle in tropical production systems overestimated CH4 emissions when they were compared with our database. The mathematical model with higher precision and accuracy was the one that included dry matter intake and organic matter digestibility in the equation (Equation 7. R2=0.34, Cb=0.94, CCC=0.55, RMSE=60.8%, r=0.58), followed by models that included neutral detergent fiber intake data (Equation 5). Our data did not show a relationship between CH4 emissions and gross energy intake or live weight.
format article
author Molina Botero, Isabel
Díaz Céspedes, Medardo
Mayorga Mogollón, Olga
Ku Vera, Juan
Arceo Castillo, Jeyder
Montoya Flores, María Denisse
Arango, Jacobo
Gómez Bravo, Carlos
author_facet Molina Botero, Isabel
Díaz Céspedes, Medardo
Mayorga Mogollón, Olga
Ku Vera, Juan
Arceo Castillo, Jeyder
Montoya Flores, María Denisse
Arango, Jacobo
Gómez Bravo, Carlos
author_sort Molina Botero, Isabel
title Validation of enteric methane emissions by cattle estimated from mathematical models using data from in vivo experiments
title_short Validation of enteric methane emissions by cattle estimated from mathematical models using data from in vivo experiments
title_full Validation of enteric methane emissions by cattle estimated from mathematical models using data from in vivo experiments
title_fullStr Validation of enteric methane emissions by cattle estimated from mathematical models using data from in vivo experiments
title_full_unstemmed Validation of enteric methane emissions by cattle estimated from mathematical models using data from in vivo experiments
title_sort validation of enteric methane emissions by cattle estimated from mathematical models using data from in vivo experiments
publisher Eduem - Editora da Universidade Estadual de Maringa
publishDate 2025
url https://periodicos.uem.br/ojs/index.php/ActaSciAnimSci/article/view/69328
http://hdl.handle.net/20.500.12324/41162
https://doi.org/10.4025/actascianimsci.v47i1.69328
work_keys_str_mv AT molinaboteroisabel validationofentericmethaneemissionsbycattleestimatedfrommathematicalmodelsusingdatafrominvivoexperiments
AT diazcespedesmedardo validationofentericmethaneemissionsbycattleestimatedfrommathematicalmodelsusingdatafrominvivoexperiments
AT mayorgamogollonolga validationofentericmethaneemissionsbycattleestimatedfrommathematicalmodelsusingdatafrominvivoexperiments
AT kuverajuan validationofentericmethaneemissionsbycattleestimatedfrommathematicalmodelsusingdatafrominvivoexperiments
AT arceocastillojeyder validationofentericmethaneemissionsbycattleestimatedfrommathematicalmodelsusingdatafrominvivoexperiments
AT montoyafloresmariadenisse validationofentericmethaneemissionsbycattleestimatedfrommathematicalmodelsusingdatafrominvivoexperiments
AT arangojacobo validationofentericmethaneemissionsbycattleestimatedfrommathematicalmodelsusingdatafrominvivoexperiments
AT gomezbravocarlos validationofentericmethaneemissionsbycattleestimatedfrommathematicalmodelsusingdatafrominvivoexperiments
_version_ 1842256202487037952
spelling RepoAGROSAVIA411622025-08-30T03:02:24Z Validation of enteric methane emissions by cattle estimated from mathematical models using data from in vivo experiments Validation of enteric methane emissions by cattle estimated from mathematical models using data from in vivo experiments Molina Botero, Isabel Díaz Céspedes, Medardo Mayorga Mogollón, Olga Ku Vera, Juan Arceo Castillo, Jeyder Montoya Flores, María Denisse Arango, Jacobo Gómez Bravo, Carlos Genética y mejoramiento animal - L10 Ganado bovino Metano Matemática Mejoramiento genético Ganadería y especies menores http://aims.fao.org/aos/agrovoc/c_1391 http://aims.fao.org/aos/agrovoc/c_4784 http://aims.fao.org/aos/agrovoc/c_4649 http://aims.fao.org/aos/agrovoc/c_11119 Several authors have developed equations to estimate methane (CH4) emissions by cattle according to variables such as dry matter and nutrient intake, live weight, or weight gain. Mathematical models using these variables show a large variability of results, being necessary to identify those which provide more precise and accurate predictions. For this reason, the objective of this study was to validate enteric CH4 emissions estimated from mathematical models through a comparison with a database of CH4 emissions obtained from cattle experiments carried out in tropical regions. A database of 495 individual cattle CH4 emissions data (g day-1) obtained from 19 studies in three tropical Latin American countries was built for this study. Results showed that mathematical models developed for cattle in tropical production systems overestimated CH4 emissions when they were compared with our database. The mathematical model with higher precision and accuracy was the one that included dry matter intake and organic matter digestibility in the equation (Equation 7. R2=0.34, Cb=0.94, CCC=0.55, RMSE=60.8%, r=0.58), followed by models that included neutral detergent fiber intake data (Equation 5). Our data did not show a relationship between CH4 emissions and gross energy intake or live weight. The regional CLIMAT-AmSud program through the LCL-RN Iberoamerican program for science and technology - CYTED Ganadería bovina 2025-08-29T20:03:21Z 2025-08-29T20:03:21Z 2025 2025 article Artículo científico http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 https://periodicos.uem.br/ojs/index.php/ActaSciAnimSci/article/view/69328 1806-2636 http://hdl.handle.net/20.500.12324/41162 https://doi.org/10.4025/actascianimsci.v47i1.69328 reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA eng Acta Scientiarum - Animal Sciences 47 1 1 9 Arceo-Castillo, J. I., Vázquez, A. T. P., Solís, J. R. C., Gamboa, J. A. A., Owen, P. Q., Vera, J. C. K. (2017). Evaluación de las cámaras respirométricas con bovinos alimentados con pastos tropicales para la producción de metano entérico. Revista Colombiana Ciencias Pecuarias, 30(Supl), 137-138. Benaouda, M., González-Ronquillo, M., Appuhamy, J. A. D. R. N., Kebreab, E., Molina, L. T., Herrera-Camacho, J., ... Castelán-Ortega, O. A. (2020). Development of mathematical models to predict enteric methane emission by cattle in Latin America. Livestock Science, 241, 104177. DOI: https://doi.org/10.1016/j.livsci.2020.104177 Bibby, J., & Toutenburg, H. (1977). Prediction and improved estimation in linear models. Chichester, GB: John Wiley. Charmley, E., Williams, S. R. O., Moate, P. J., Hegarty, R. S., Herd, R. M., Oddy, V. H., … Hannah, M. C. (2016). A universal equation to predict methane production of forage-fed cattle in Australia. Animal Production Science, 56(3), 169-180. DOI: https://doi.org/10.1071/AN15365 Congio, G. F. S., Bannink, A., Mayorga, O. L., Rodrigues, J. P. P., Bougouin, A., Kebreab, E., ... Hristov, A. N. (2023). Improving the accuracy of beef cattle methane inventories in Latin America and Caribbean countries. Science of The Total Environment, 856(Part 2), 159128. DOI: https://doi.org/10.1016/j.scitotenv.2022.159128 Congio, G. F. S., Bannink, A., Mogollón, O. L. M., Jaurena, G., Gonda, H., Gere, J. I., ... Hristov, A. N. (2021). Enteric methane mitigation strategies for ruminant livestock systems in the Latin America and Caribbean region: a meta-analysis. Journal of Cleaner Production, 312, 127693. DOI: https://doi.org/10.1016/j.jclepro.2021.127693 Cottle, D. J., & Eckard, R. J. (2018). Global beef cattle methane emissions: yield prediction by cluster and meta-analyses. Animal Production Science, 58(12), 2167-2177. DOI: https://doi.org/10.1071/AN17832 Díaz-Céspedes, M., Hernández-Guevara, J. E., & Gómez, C. (2021). Enteric methane emissions by young Brahman bulls grazing tropical pastures at different rainfall seasons in the Peruvian jungle. Tropical Animal Health and Production, 53(4), 421. DOI: https://doi.org/10.1007/s11250-021-02871-4 Ellis, J. L., Kebreab, E., Odongo, N. E., McBride, B. W., Okine, E. K., & France, J. (2007). Prediction of methane production from dairy and beef cattle. Journal Dairy Science, 90(7), 3456-3466. DOI: https://doi.org/10.3168/jds.2006-675 Eugène, M., Sauvant, D., Nozière, P., Viallard, D., Oueslati, K., Lherm, M., … Doreau, M. (2019). A new Tier 3 method to calculate methane emission inventory for ruminants. Journal of Environmental Management, 231, 982-988. DOI: https://doi.org/10.1016/j.jenvman.2018.10.086 Gaviria-Uribe, X., Bolivar, D. M., Rosenstock, T. S., Molina-Botero, I. C., Chirinda, N., Barahona, R., & Arango, J. (2020). Nutritional quality, voluntary intake and enteric methane emissions of diets based on novel cayman grass and its associations with two Leucaena shrub legumes. Frontiers in Veterinary Science, 7. DOI: https://doi.org/10.3389/fvets.2020.579189 Hales, K. E., Coppin, C. A., Smith, Z. K., McDaniel, Z. S., Tedeschi, L. O., Cole, N. A., & Galyean, M. L. (2022). Predicting metabolizable energy from digestible energy for growing and finishing beef cattle and relationships to the prediction of methane. Journal of Animal Science, 100(3), skac013. DOI: https://doi.org/10.1093/jas/skac013 Hammond, K. J., Crompton, L. A., Bannink, A., Dijkstra, J., Yáñez-Ruiz, D. R., O’Kiely, P., … Reynolds, C. K. (2016). Review of current in vivo measurement techniques for quantifying enteric methane emission from ruminants. Animal Feed Science and Technology, 219, 13-30. DOI: https://doi.org/10.1016/j.anifeedsci.2016.05.018 Hegarty, R. S. (2004). Genotype differences and their impact on digestive tract function of ruminants: a review. Australian Journal of Experimental Agriculture, 44(5), 459-467. DOI: https://doi.org/10.1071/EA02148 Hristov, A. N., Kebreab, E., Niu, M., Oh, J., Bannink, A., Bayat, A. R., … Yu, Z. (2018). Symposium review: uncertainties in enteric methane inventories, measurement techniques, and prediction models. Journal of Dairy Science, 101(7), 6655-6674. DOI: https://doi.org/10.3168/jds.2017-13536 Intergovernmental Panel on Climate Change [IPCC]. (1997). IPCC guidelines for national greenhouse gas inventories. Bracknell, UK: IPCC/OECD/IEA. Intergovernmental Panel on Climate Change [IPCC]. (2006). 2006 IPCC guidelines for national greenhouse gas inventories (Vol. 4). Kanagawa, JP: IPCC. Intergovernmental Panel on Climate Change [IPCC]. (2019). Chapter 4: forest land. In D. Blain, F. Agus, M. A. Alfaro, & H. Vreuls (Eds.), 2019 Refinement to the 2006 IPCC guidelines for national greenhouse gas inventories: agriculture, forestry and other land use (Vol. 4, p. 68). Kanagawa, JP: IPCC. Jiménez-Ocampo, R., Montoya-Flores, M. D., Herrera-Torres, E., Pámanes-Carrasco, G., Arceo-Castillo, J. I., Valencia-Salazar, S. S., ... Ku-Vera, J. C. (2021). Effect of chitosan and naringin on enteric methane emissions in crossbred heifers fed tropical grass. Animals, 11(6), 1599. DOI: https://doi.org/10.3390/ani11061599 Jiménez-Ocampo, R., Montoya-Flores, M. D., Pamanes-Carrasco, G., Herrera-Torres, E., Arango, J., Estarrón-Espinosa, M., ... Ku-Vera, J. C. (2022). Impact of orange essential oil on enteric methane emissions of heifers fed bermudagrass hay. Frontiers in Veterinary Science, 9, 863910. DOI: https://doi.org/10.3389/fvets.2022.863910 Johnson, K. A., & Johnson, D. E. (1995). Methane emissions from cattle. Journal of Animal Science, 73(8), 2483-2492. DOI: https://doi.org/10.2527/1995.7382483x Kaewpila, C., & Sommart, K. (2016). Development of methane conversion factor models for Zebu beef cattle fed low-quality crop residues and by-products in tropical regions. Ecology and Evolution, 6(20), 7422-7432. DOI: https://doi.org/10.1002/ece3.2500 Kebreab, E., Johnson, K. A., Archibeque, S. L., Pape, D., & Wirth, T. (2008). Model for estimating enteric methane emissions from United States dairy and feedlot cattle. Journal of Animal Science, 86(10), 2738-2748. DOI: https://doi.org/10.2527/jas.2008-0960 Ku-Vera, J. C., Valencia-Salazar, S. S., Piñeiro-Vázquez, A. T., Molina-Botero, I. C., Arroyave-Jaramillo, J., Montoya-Flores, M. D., … Solorio-Sánchez, F. J. (2018). Determination of methane yield in cattle fed tropical grasses as measured in open-circuit respiration chambers. Agricultural and Forest Meteorology, 258, 3-7. DOI: https://doi.org/10.1016/j.agrformet.2018.01.008 Lin, L. I. (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics, 45(1), 255-68. PMID 2720055 Molina-Botero, I. C., Angarita, E. A., Mayorga, O. L., Chará, J., & Barahona-Rosales, R. (2016). Effect of Leucaena leucocephala on methane production of Lucerna heifers fed a diet based on Cynodon plectostachyus. Livestock Science, 185, 24-29. DOI: https://doi.org/10.1016/j.livsci.2016.01.009 Molina-Botero, I. C., Arroyave-Jaramillo, J., Valencia-Salazar, S., Barahona-Rosales, R., Aguilar-Pérez, C. F., Burgos, A. A., … Ku-Vera, J. C. (2019a). Effects of tannins and saponins contained in foliage of Gliricidia sepium and pods of Enterolobium cyclocarpum on fermentation, methane emissions and rumen microbial population in crossbred heifers. Animal Feed Science and Technology, 251, 1-11 DOI: https://doi.org/10.1016/j.anifeedsci.2019.01.011 Molina-Botero, I. C., Donney’s, G., Montoya, S., Rivera, J. E., Villegas, G., Chará, J., & Barahona, R. (2015). La inclusión de Leucaena leucocephala reduce la producción de metano de terneras Lucerna alimentadas con Cynodon plectostachyus y Megathyrsus maximus. Livestock Research for Rural Development, 27(5). Molina-Botero, I. C., Montoya-Flores, M. D., Zavala-Escalante, L. M., Barahona-Rosales, R., Arango, J., & Ku-Vera, J. C. (2019b). Effects of long-term diet supplementation with Gliricidia sepium foliage mixed with Enterolobium cyclocarpum pods on enteric methane, apparent digestibility, and rumen microbial population in crossbred heifers. Journal of Animal Science, 97(4), 1619-1633. DOI: https://doi.org/10.1093/jas/skz067 Montoya-Flores, M. D., Molina-Botero, I. C., Arango, J., Romano-Muñoz, J. L., Solorio-Sánchez, F. J., Aguilar-Pérez, C. F., & Ku-Vera, J. C. (2020). Effect of dried leaves of Leucaena leucocephala on rumen fermentation, rumen microbial population, and enteric methane production in crossbred heifers. Animals, 10(2), 300. DOI: https://doi.org/10.3390/ani10020300 Moraes, L. E., Strathe, A. B., Fadel, J. G., Casper, D. P., & Kebreab, E. (2014). Prediction of enteric methane emissions from cattle. Global Change Biology, 20(7), 2140-2148. DOI: https://doi.org/10.1111/gcb.12471 Muñoz-Tamayo, R., Ruiz, B., Blavy, P., Giger-Reverdin, S., Sauvant, D., Williams, S. R. O., & Moate, P. J. (2022). Predicting the dynamics of enteric methane emissions based on intake kinetic patterns in dairy cows fed diets containing either wheat or corn. Animal - Open Space, 1(1), 100003. DOI: https://doi.org/10.1016/j.anopes.2021.100003 Niu, M., Kebreab, E., Hristov, A. N., Oh, J., Arndt, C., Bannink, A., ... Yu, Z. (2018). Prediction of enteric methane production, yield, and intensity in dairy cattle using an intercontinental database. Global Change Biology, 24(8), 3368-3389. DOI: https://doi.org/10.1111/gcb.14094 Patra, A. K. (2017). Prediction of enteric methane emission from cattle using linear and non-linear statistical models in tropical production systems. Mitigation and Adaptation Strategies for Global Change, 22(4), 629-650. DOI: https://doi.org/10.1007/s11027-015-9691-7 Pires Sobrinho, T. L., Branco, R. H., Magnani, E., Berndt, A., Canesin, R. C., & Mercadante, M. E. Z. (2019). Development and evaluation of prediction equations for methane emission from Nellore cattle. Acta Scientiarum. Animal Sciences, 41, 42559. DOI: https://doi.org/10.4025/actascianimsci.v41i1.42559 Ramin, M., & Huhtanen, P. (2013). Development of equations for predicting methane emissions from ruminants. Journal of Dairy Science, 96(4), 2476-2493. DOI: https://doi.org/10.3168/jds.2012-6095 Ribeiro, R. S., Rodrigues, J. P. P., Maurício, R. M., Borges, A. L. C. C., Silva, R. R., Berchielli, T. T., ... Pereira, L. G. R. (2020). Predicting enteric methane production from cattle in the tropics. Animal, 14(Suppl. 3), s438-s452. DOI: https://doi.org/10.1017/S1751731120001743 Sauvant, D., & Nozière, P. (2016). Quantification of the main digestive processes in ruminants: the equations involved in the renewed energy and protein feed evaluation systems. Animal, 10(5), 755-770. DOI: https://doi.org/10.1017/S1751731115002670 Storlien, T. M., Volden, H., Almøy, T., Beauchemin, K. A., McAllister, T. A., & Harstad, O. M. (2014). Prediction of enteric methane production from dairy cows. Acta Agriculturae Scandinavica, Section A — Animal Science, 64(2), 98-109. DOI: https://doi.org/10.1080/09064702.2014.959553 Suzuki, T., Sommart, K., Angthong, W., Nguyen, T. V., Chaokaur, A., Nitipot, P., ... Kawashima, T. (2018). Prediction of enteric methane emission from beef cattle in Southeast Asia. Animal Science Journal, 89(9), 1287-1295. DOI: https://doi.org/10.1111/asj.13058 Tedeschi, L. O. (2006). Assessment of the adequacy of mathematical models. Agricultural Systems, 89(2-3), 225-247. DOI: https://doi.org/10.1016/j.agsy.2005.11.004 Tedeschi, L. O., Abdalla, A. L., Álvarez, C., Anuga, S. W., Arango, J., Beauchemin, K. A., ... Kebreab, E. (2022). Quantification of methane emitted by ruminants: a review of methods. Journal of Animal Science, 100(7), skac197. DOI: https://doi.org/10.1093/jas/skac197 Valencia-Salazar, S. S., Piñeiro-Vázquez, A. T., Molina-Botero, I. C., Lazos-Balbuena, F. J., Uuh-Narváez, J. J., Segura-Campos, M. R., … Ku-Vera, J. C. (2018). Potential of Samanea saman pod meal for enteric methane mitigation in crossbred heifers fed low-quality tropical grass. Agricultural and Forest Meteorology, 258, 108-116. DOI: https://doi.org/10.1016/j.agrformet.2017.12.262 Van Lingen, H. , Niu, M., Kebreab, E., Valadares Filho, S., Rooke, J. A., Duthie, C.-A., ... Hristov, A. N. (2019). Prediction of enteric methane production, yield and intensity of beef cattle using an intercontinental database. Agriculture, Ecosystems and Environment, 283, 106575. DOI: https://doi.org/10.1016/j.agee.2019.106575 Yan, T., Agnew, R. E., Gordon, F. J., & Porter, M. G. (2000). Prediction of methane energy output in dairy and beef cattle offered grass silage-based diets. Livestock Production Science, 64(2-3), 253-263. DOI: https://doi.org/10.1016/S0301-6226(99)00145-1 Yan, T., Porter, M. G., & Mayne, C. S. (2009). Prediction of methane emission from beef cattle using data measured in indirect open-circuit respiration calorimeters. Animal, 3(10), 1455-1462. DOI: https://doi.org/10.1017/S175173110900473X Atribución-NoComercial-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf application/pdf Eduem - Editora da Universidade Estadual de Maringa Acta Scientiarum - Animal Sciences; Vol. 47, Núm. 1 (2025): Acta Scientiarum - Animal Sciences ;p. 1 - 9.