Solar Dryers: Technical Insights and Bibliometric Trends in Energy Technologies
This review article provides a comprehensive analysis of the technical advancements and research trends in solar drying technologies for agricultural products. The study encompasses various innovations in energy storage systems, including phase change materials (PCMs) and the use of computational fl...
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | Inglés |
Publicado: |
Multidisciplinary Digital Publishing Institute (MDPI)
2025
|
Materias: | |
Acceso en línea: | https://www.mdpi.com/2624-7402/6/4/228 http://hdl.handle.net/20.500.12324/41050 https://doi.org/10.3390/agriengineering6040228 |
id |
RepoAGROSAVIA41050 |
---|---|
record_format |
dspace |
institution |
Corporación Colombiana de Investigación Agropecuaria |
collection |
Repositorio AGROSAVIA |
language |
Inglés |
topic |
Recursos renovables de energía - P06 Secado al sol Bibliometría Tecnología energética Transversal http://aims.fao.org/aos/agrovoc/c_14413 http://aims.fao.org/aos/agrovoc/c_62e403a1 http://aims.fao.org/aos/agrovoc/c_37873 |
spellingShingle |
Recursos renovables de energía - P06 Secado al sol Bibliometría Tecnología energética Transversal http://aims.fao.org/aos/agrovoc/c_14413 http://aims.fao.org/aos/agrovoc/c_62e403a1 http://aims.fao.org/aos/agrovoc/c_37873 Villagran, Edwin Espitia, John Javier Velázquez, Fabián Andrés Rodriguez, Jader Solar Dryers: Technical Insights and Bibliometric Trends in Energy Technologies |
description |
This review article provides a comprehensive analysis of the technical advancements and research trends in solar drying technologies for agricultural products. The study encompasses various innovations in energy storage systems, including phase change materials (PCMs) and the use of computational fluid dynamics (CFD) for optimizing the drying process. Through a bibliometric analysis of 126 scientific papers published between 1984 and 2024, five major research clusters were identified: energy generation, heat transfer, thermal storage, simulation modeling, and the integration of hybrid systems. The results demonstrate a marked increase in scientific output over the past decade, emphasizing a growing interest in the sustainable use of solar energy for drying applications. Key findings highlight that while PCM-based storage solutions significantly enhance the thermal stability of dryers, the high implementation costs and technical complexities limit their adoption, especially in small-scale operations. Similarly, CFD models have proven effective in optimizing air and temperature distribution within dryers; however, their performance is hindered by real-world fluctuations in solar radiation and humidity levels. To address these limitations, future research should focus on the development of cost-effective PCM materials and the improvement of CFD models for dynamic environmental conditions. The review concludes by emphasizing the importance of interdisciplinary collaboration in the design and application of these technologies, recommending the inclusion of real-world case studies to better illustrate the practical implications and economic benefits of solar drying technologies for agricultural production. |
format |
article |
author |
Villagran, Edwin Espitia, John Javier Velázquez, Fabián Andrés Rodriguez, Jader |
author_facet |
Villagran, Edwin Espitia, John Javier Velázquez, Fabián Andrés Rodriguez, Jader |
author_sort |
Villagran, Edwin |
title |
Solar Dryers: Technical Insights and Bibliometric Trends in Energy Technologies |
title_short |
Solar Dryers: Technical Insights and Bibliometric Trends in Energy Technologies |
title_full |
Solar Dryers: Technical Insights and Bibliometric Trends in Energy Technologies |
title_fullStr |
Solar Dryers: Technical Insights and Bibliometric Trends in Energy Technologies |
title_full_unstemmed |
Solar Dryers: Technical Insights and Bibliometric Trends in Energy Technologies |
title_sort |
solar dryers: technical insights and bibliometric trends in energy technologies |
publisher |
Multidisciplinary Digital Publishing Institute (MDPI) |
publishDate |
2025 |
url |
https://www.mdpi.com/2624-7402/6/4/228 http://hdl.handle.net/20.500.12324/41050 https://doi.org/10.3390/agriengineering6040228 |
work_keys_str_mv |
AT villagranedwin solardryerstechnicalinsightsandbibliometrictrendsinenergytechnologies AT espitiajohnjavier solardryerstechnicalinsightsandbibliometrictrendsinenergytechnologies AT velazquezfabianandres solardryerstechnicalinsightsandbibliometrictrendsinenergytechnologies AT rodriguezjader solardryerstechnicalinsightsandbibliometrictrendsinenergytechnologies |
_version_ |
1842256038577831936 |
spelling |
RepoAGROSAVIA410502025-07-10T03:01:58Z Solar Dryers: Technical Insights and Bibliometric Trends in Energy Technologies Solar Dryers: Technical Insights and Bibliometric Trends in Energy Technologies Villagran, Edwin Espitia, John Javier Velázquez, Fabián Andrés Rodriguez, Jader Recursos renovables de energía - P06 Secado al sol Bibliometría Tecnología energética Transversal http://aims.fao.org/aos/agrovoc/c_14413 http://aims.fao.org/aos/agrovoc/c_62e403a1 http://aims.fao.org/aos/agrovoc/c_37873 This review article provides a comprehensive analysis of the technical advancements and research trends in solar drying technologies for agricultural products. The study encompasses various innovations in energy storage systems, including phase change materials (PCMs) and the use of computational fluid dynamics (CFD) for optimizing the drying process. Through a bibliometric analysis of 126 scientific papers published between 1984 and 2024, five major research clusters were identified: energy generation, heat transfer, thermal storage, simulation modeling, and the integration of hybrid systems. The results demonstrate a marked increase in scientific output over the past decade, emphasizing a growing interest in the sustainable use of solar energy for drying applications. Key findings highlight that while PCM-based storage solutions significantly enhance the thermal stability of dryers, the high implementation costs and technical complexities limit their adoption, especially in small-scale operations. Similarly, CFD models have proven effective in optimizing air and temperature distribution within dryers; however, their performance is hindered by real-world fluctuations in solar radiation and humidity levels. To address these limitations, future research should focus on the development of cost-effective PCM materials and the improvement of CFD models for dynamic environmental conditions. The review concludes by emphasizing the importance of interdisciplinary collaboration in the design and application of these technologies, recommending the inclusion of real-world case studies to better illustrate the practical implications and economic benefits of solar drying technologies for agricultural production. 2025-07-09T16:51:16Z 2025-07-09T16:51:16Z 2024-10 2024 article Artículo científico http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 https://www.mdpi.com/2624-7402/6/4/228 2624-7402 http://hdl.handle.net/20.500.12324/41050 https://doi.org/10.3390/agriengineering6040228 reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA eng AgriEngineering 6 1 4041 4063 Villagran, E.; Henao-Rojas, J.C.; Franco, G. Thermo-Environmental Performance of Four Different Shapes of Solar Greenhouse Dryer with Free Convection Operating Principle and No Load on Product. Fluids 2021, 65, 183. [CrossRef] Hao,W.; Zhang, H.; Liu, S.; Lai, Y. Design and Prediction Method of Dual Working Medium Solar Energy Drying System. Appl. Therm. Eng. 2021, 195, 117153. [CrossRef] Fernandes, L.; Fernandes, J.R.; Tavares, P.B. Design of a Friendly Solar Food Dryer for Domestic Over-Production. Solar 2022, 2, 495–508. [CrossRef] Elzubeir, A.O. Solar Dehydration of Sliced Onion. Int. J. Veg. Sci. 2014, 20, 264–269. [CrossRef] Fernandes, L.; Tavares, P.B. A Review on Solar Drying Devices: Heat Transfer, Air Movement and Type of Chambers. Solar 2024, 4, 15–42. [CrossRef] Kumar, M.; Sansaniwal, S.K.; Khatak, P. Progress in Solar Dryers for Drying Various Commodities. Renew. Sustain. Energy Rev. 2016, 55, 346–360. [CrossRef] Prakash, O.; Kumar, A. Historical Review and Recent Trends in Solar Drying Systems. Int. J. Green Energy 2013, 10, 690–738. [CrossRef] Kumar, M.; Sahdev, R.K.; Tiwari, S.; Manchanda, H.; Chhabra, D.; Panchal, H.; Sadasivuni, K.K. Thermal Performance and Kinetic Analysis of Vermicelli Drying inside a Greenhouse for Sustainable Development. Sustain. Energy Technol. Assess. 2021, 44, 101082. [CrossRef] Tiwari, S.; Tiwari, G.N.; Al-Helal, I.M. Development and Recent Trends in Greenhouse Dryer: A Review. Renew. Sustain. Energy Rev. 2016, 65, 1048–1064. [CrossRef] Siddiqui, S.A.; Ucak, ˙I.; Jain, S.; Elsheikh, W.; Ali Redha, A.; Kurt, A.; Toker, O.S. Impact of Drying on Techno-Functional and Nutritional Properties of Food Proteins and Carbohydrates-A Comprehensive Review. Dry. Technol. 2024, 42, 592–611. [CrossRef] Radhakrishnan, G.; Breaz, T.O.; Al Mahrouqi, A.W.A.; Al Zakwani, N.A.; Al Fahdi, M.H.; Al Shuraiqi, A.S.; Al Awamri, S.A.; Al Aamri, R.S.; Karthikeyan, K.R. A Comparative Management Analysis on the Performance of Different Solar Drying Methods for Drying Vegetables and Fruits. Sustainability 2024, 16, 775. [CrossRef Natarajan, S.K.; Elavarasan, E. A Review on Computational Fluid Dynamics Analysis on Greenhouse Dryer. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Bogor, Indonesia, 29 August 2019; IOP Publishing: Bristol, UK, 2019; Volume 312, p. 12033. Román-Roldán, N.I.; Yudonago, J.F.I.; López-Ortiz, A.; Rodríguez-Ramírez, J.; Sandoval-Torres, S. A New Air Recirculation System for Homogeneous Solar Drying: Computational Fluid Dynamics Approach. Renew. Energy 2021, 179, 1727–1741. [CrossRef] Demissie, Y.A.; Abreham, R.E.;Wassie, H.M.; Getie, M.Z. Advancements in Solar Greenhouse Dryers for Crop Drying. Energy Rep. 2024, 11, 5046–5058. [CrossRef] Kavya, V.S.; Ramana, A.S. Recent Trends in PCM-Integrated Solar Dryers. Eng. Proc. 2024, 61, 6. [CrossRef] Delgado-Plaza, E.; Peralta-Jaramillo, J.; Quilambaqui, M.; Gonzalez, O.; Reinoso-Tigre, J.; Arevalo, A.; Arancibia, M.; Paucar, M.; Velázquez-Martí, B. Thermal Evaluation of a Hybrid Dryer with Solar and Geothermal Energy for Agroindustry Application. Appl. Sci. 2019, 9, 4079. [CrossRef] Barbosa, E.G.; de Araujo, M.E.V.; de Oliveira, A.C.L.; Martins, M.A. Thermal Energy Storage Systems Applied to Solar Dryers: Classification, Performance, and Numerical Modeling: An Updated Review. Case Stud. Therm. Eng. 2023, 45, 102986. [CrossRef] Firfiris, V.K.; Kaffe, Z.D.; Kalamaras, S.D.; Lithourgidis, A.A.; Martzopoulou, A.G.; Kotsopoulos, T.A. A Prototype Passive Solar Drying System: Exploitation of the Solar Chimney Effect for the Drying of Potato and Banana. Appl. Sci. 2022, 12, 11784. [CrossRef] Marongiu, F.; Soprani, S.; Engelbrecht, K. Modeling of High Temperature Thermal Energy Storage in Rock Beds–Experimental Comparison and Parametric Study. Appl. Therm. Eng. 2019, 163, 114355. [CrossRef] Srinivasan, G.; Rabha, D.K.; Muthukumar, P. A Review on Solar Dryers Integrated with Thermal Energy Storage Units for Drying Agricultural and Food Products. Sol. Energy 2021, 229, 22–38. [CrossRef] Kitchenham, B. Procedures for Performing Systematic Reviews. Keele UK Keele Univ. 2004, 33, 1–26. Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. PLoS Med. 2009, 6, e1000100. [CrossRef] [PubMed] Enarevba, D.R.; Haapala, K.R. The Emerging Hemp Industry: A Review of Industrial Hemp Materials and Product Manufacturing. AgriEngineering 2024, 6, 2891–2925. [CrossRef] Villagran, E.; Ortiz, G.A.; Mojica, L.; Flores-Velasquez, J.; Aguilar, C.E.; Gomez, L.; Antolinez, E.; Numa, S. Bibliometric Study of Cut Flower Research. Ornam. Hortic. 2023, 29, 500–514. [CrossRef] Herrera-Franco, G.; Montalván-Burbano, N.; Carrión-Mero, P.; Bravo-Montero, L. Worldwide Research on Socio-Hydrology: A Bibliometric Analysis. Water 2021, 13, 1283. [CrossRef] Oli ´ nski, M.; Krukowski, K.; Sieci ´ nski, K. Bibliometric Overview of ChatGPT: New Perspectives in Social Sciences. Publications 2024, 12, 9. [CrossRef] Salinas-Velandia, D.A.; Romero-Perdomo, F.; Numa-Vergel, S.; Villagrán, E.; Donado-Godoy, P.; Galindo-Pacheco, J.R. Insights into Circular Horticulture: Knowledge Diffusion, Resource Circulation, One Health Approach, and Greenhouse Technologies. Int. J. Environ. Res. Public Health 2022, 19, 12053. [CrossRef] Briones-Bitar, J.; Carrión-Mero, P.; Montalván-Burbano, N.; Morante-Carballo, F. Rockfall Research: A Bibliometric Analysis and Future Trends. Geosciences 2020, 10, 403. [CrossRef] Passas, I. Bibliometric Analysis: The Main Steps. Encyclopedia 2024, 4, 1014–1025. [CrossRef] Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [CrossRef] Rocha, G.A.O.; Vergel, S.J.N.; Arias, L.G.; Giraldo, Y.R.; Villagran, E. La Técnica Del Cultivo Sin Suelo y Su Contribución Al Mejoramiento Tecnológico de La Agricultura Bajo Cubierta: Un Análisis Bibliométrico. Cienc. Lat. Rev. Científica Multidiscip. 2022, 6, 7053–7074. Villagrán, E.; Romero-Perdomo, F.; Numa-Vergel, S.; Galindo-Pacheco, J.R.; Salinas-Velandia, D.A. Life Cycle Assessment in Protected Agriculture: Where AreWe Now, and Where Should We Go Next? Horticulturae 2023, 10, 15. [CrossRef] Carrión-Mero, P.; Montalván-Burbano, N.; Paz-Salas, N.; Morante-Carballo, F. Volcanic Geomorphology: A Review of Worldwide Research. Geosciences 2020, 10, 347. [CrossRef] Saini, R.K.; Saini, D.K.; Gupta, R.; Verma, P.; Thakur, R.; Kumar, S. Technological Development in Solar Dryers from 2016 to 2021-A Review. Renew. Sustain. Energy Rev. 2023, 188, 113855. [CrossRef] Hin, L.; Buntong, B.; Mean, C.M.; Chhoem, C.; Prasad, P.V.V. Impacts of Using Solar Dryers on Socio-Economic Conditions of Dried Fish Processors in Cambodia. Sustainability 2024, 16, 2130. [CrossRef] Hadibi, T.; Mennouche, D.; Boubekri, A.; Chouicha, S.; Arıcı, M.; Yunfeng, W.; Ming, L.; Fang-ling, F. Drying Characteristic, Sustainability, and 4E (Energy, Exergy, and Enviro-Economic) Analysis of Dried Date Fruits Using Indirect Solar-Electric Dryer: An Experimental Investigation. Renew. Energy 2023, 218, 119291. [CrossRef] Cetina-Quiñones, A.J.; Santamaria-Bonfil, G.; Medina-Esquivel, R.A.; Bassam, A. Techno-Economic Analysis of an Indirect Solar Dryer with Thermal Energy Storage: An Approach with Machine Learning Algorithms for Decision Making. Therm. Sci. Eng. Prog. 2023, 45, 102131. [CrossRef] Carrión-Mero, P.; Montalván-Burbano, N.; Herrera-Narváez, G.; Morante-Carballo, F. Geodiversity and Mining towards the Development of Geotourism: A Global Perspective. Int. J. Des. Nat. Ecodyn. 2021, 16, 191–201. [CrossRef] Manzanet, J.E.A. El Artículo de Revisión y Su Importancia En La Literatura Científica. Rev. Cuba. Salud Pública 2022, 48, e3719. Yuen, J. Comparison of Impact Factor, Eigenfactor Metrics, and SCImago Journal Rank Indicator and h-Index for Neurosurgical and Spinal Surgical Journals. World Neurosurg. 2018, 119, e328–e337. [CrossRef] Holechek, J.L.; Geli, H.M.E.; Sawalhah, M.N.; Valdez, R. A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050? Sustainability 2022, 14, 4792. [CrossRef] Le, T.S.; Le, T.H.; Pham, M.T.; MinhCity, H.C. A Review of the Indirect Solar Dryer with Sensible Heat Storage Mediums. J. Mech. Eng. Res. Dev. 2021, 44, 131–140. Rocha, G.A.O.; Pichimata, M.A.; Villagran, E. Research on the Microclimate of Protected Agriculture Structures Using Numerical Simulation Tools: A Technical and Bibliometric Analysis as a Contribution to the Sustainability of Under-Cover Cropping in Tropical and Subtropical Countries. Sustainability 2021, 13, 10433. [CrossRef] El-Mesery, H.S.; El-Seesy, A.I.; Hu, Z.; Li, Y. Recent Developments in Solar Drying Technology of Food and Agricultural Products: A Review. Renew. Sustain. Energy Rev. 2022, 157, 112070. [CrossRef] Da¸s, M.; Alıç, E.; Kavak Akpinar, E. Numerical and Experimental Analysis of Heat and Mass Transfer in the Drying Process of the Solar Drying System. Eng. Sci. Technol. Int. J. 2021, 24, 236–246. [CrossRef] Purna Prakash, K.; Venkata Pavan Kumar, Y.; Himajyothi, K.; Pradeep Reddy, G. Comprehensive Bibliometric Analysis on Smart Grids: Key Concepts and Research Trends. Electricity 2024, 5, 75–92. [CrossRef] Bal, L.M.; Satya, S.; Naik, S.N. Solar Dryer with Thermal Energy Storage Systems for Drying Agricultural Food Products: A Review. Renew. Sustain. Energy Rev. 2010, 14, 2298–2314. [CrossRef] Lingayat, A.B.; Chandramohan, V.P.; Raju, V.R.K.; Meda, V. A Review on Indirect Type Solar Dryers for Agricultural Crops–Dryer Setup, Its Performance, Energy Storage and Important Highlights. Appl. Energy 2020, 258, 114005. [CrossRef] Lakshmi, D.V.N.; Muthukumar, P.; Layek, A.; Nayak, P.K. Drying Kinetics and Quality Analysis of Black Turmeric (Curcuma Caesia) Drying in a Mixed Mode Forced Convection Solar Dryer Integrated with Thermal Energy Storage. Renew. Energy 2018, 120, 23–34. [CrossRef] Kant, K.; Shukla, A.; Sharma, A.; Kumar, A.; Jain, A. Thermal Energy Storage Based Solar Drying Systems: A Review. Innov. Food Sci. Emerg. Technol. 2016, 34, 86–99. [CrossRef] Slimani, M.E.A.; Amirat, M.; Bahria, S.; Kurucz, I.; Sellami, R. Study and Modeling of Energy Performance of a Hybrid Photovoltaic/Thermal Solar Collector: Configuration Suitable for an Indirect Solar Dryer. Energy Convers. Manag. 2016, 125, 209–221. [CrossRef] Bal, L.M.; Satya, S.; Naik, S.N.; Meda, V. Review of Solar Dryers with Latent Heat Storage Systems for Agricultural Products. Renew. Sustain. Energy Rev. 2011, 15, 876–880. [CrossRef] Okeniyi, P.O.; Akinyemi, M.L.; Abodunrin, T.J.; Ayara, W.A.; Obatare, M.I. Assessing the Performance of a Blackbody Solar Dryer. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2023; Volume 1197, p. 12008. Devahastin, S.; Pitaksuriyarat, S. Use of Latent Heat Storage to Conserve Energy during Drying and Its Effect on Drying Kinetics of a Food Product. Appl. Therm. Eng. 2006, 26, 1705–1713. [CrossRef] Bala, B.K.; Ashraf, M.A.; Uddin, M.A.; Janjai, S. Experimental and Neural Network Prediction of the Performance of a Solar Tunnel Drier for Drying Jackfruit Bulbs and Leather. J. Food Process Eng. 2005, 28, 552–566. [CrossRef] Janjai, S.; Bala, B.K. Solar Drying Technology. Food Eng. Rev. 2012, 4, 16–54. [CrossRef] Morante-Carballo, F.; Montalván-Burbano, N.; Carrión-Mero, P.; Espinoza-Santos, N. Cation Exchange of Natural Zeolites: Worldwide Research. Sustainability 2021, 13, 7751. [CrossRef] Arslan, E.; Akta¸s, M. 4E Analysis of Infrared-Convective Dryer Powered Solar Photovoltaic Thermal Collector. Sol. Energy 2020, 208, 46–57. [CrossRef] Kondareddy, R.; Natarajan, S.; Radha Krishnan, K.; Saikia, D.; Singha, S.; Nayak, P.K. Performance Evaluation of Modified Forced Convection Solar Dryer with Energy Storage Unit for Drying of Elephant Apple (Dillenia Indica). J. Food Process Eng. 2022, 45, e13934. [CrossRef] Manisha; Tiwari, S.; Chhabra, D.; Kumari, M.; Tiwari, P.; Sahdev, R.K. Recent Developments on Photovoltaic Thermal Drying Systems: A Clean Energy Production. Clean Technol. Environ. Policy 2023, 25, 2099–2122. [CrossRef] Pawar, R.; Santara, S.; Sircar, A.; Yadav, K. Design and Development of Hybrid Solar–Biomass Drying System: An Innovative Approach. MRS Energy Sustain. 2024, 1–25. [CrossRef] Singh, A.P.; Tiwari, S.; Sinhmar, H. Modelling and Analysis of Photovoltaic-Thermal-Thermoelectric-Cooler Air Collector Integrated Mixed-Mode Greenhouse Dryer with Heat Storage Material. J. Energy Storage 2024, 95, 112369. [CrossRef] Salvatierra-Rojas, A.; Ramaj, I.; Romuli, S.; Mueller, J. CFD-Simulink Modeling of the Inflatable Solar Dryer for Drying Paddy Rice. Appl. Sci. 2021, 11, 3118. [CrossRef] Swami, V.M.; Autee, A.T.; Anil, T.R. Experimental Analysis of Solar Fish Dryer Using Phase Change Material. J. Energy Storage 2018, 20, 310–315. [CrossRef] Mamulkar, C.A.; Ikhar, S. An Investigation of Performance of the Solar Dryer from Several Perspectives. Int. J. Renew. Energy Res. 2022, 12, 1736–1741. Madhankumar, S.; Viswanathan, K.;Wu,W.; Taipabu, M.I. Analysis of Indirect Solar Dryer with PCM Energy Storage Material: Energy, Economic, Drying and Optimization. Sol. Energy 2023, 249, 667–683. [CrossRef] Jain, A.; Kumar, A.; Shukla, A.; Sharma, A. Development of Phase Change Materials (PCMs) for Solar Drying Systems. Sol. Dry. Technol. Concept Des. Testing Model. Econ. Environ. 2017, 619–633. [CrossRef] Harikrishnan, M.; Kumar, R.A.; Baby, R.; Kumar, S.A. An Experimental Investigation to Assess the Thermal Performance of a Sensible Storage Based-Downward Solar Air Heater. Exp. Heat Transf. 2024, 1–25. [CrossRef] Singh, S.; Gill, R.S.; Hans, V.S.; Singh, M. A Novel Active-Mode Indirect Solar Dryer for Agricultural Products: Experimental Evaluation and Economic Feasibility. Energy 2021, 222, 119956. [CrossRef] Kesavan, S.; Arjunan, T.V. Experimental Study on Triple Pass Solar Air Heater with Thermal Energy Storage for Drying Mint Leaves. Int. J. Energy Technol. Policy 2018, 14, 34–48. [CrossRef] GaneshKumar, P.; Sundaram, P.; Sathishkumar, A.; Vigneswaran, V.S.; Chopra, T.; Thakur, U.; Kim, S.C.; Ramkumar, V. Exploring the Performance of an Indirect Solar Dryer by Combining Three Augmentation Approaches (Trapezoidal Absorber, Shot Blasting, and Pebble Stone). J. Energy Storage 2024, 78, 110109. [CrossRef] Yadav, S.; Chandramohan, V.P. Numerical Analysis on Thermal Energy Storage Device with Finned Copper Tube for an Indirect Type Solar Drying System. J. Sol. Energy Eng. 2018, 140, 31009. [CrossRef] Droguy, Y.N.; Koffi, P.E.; Sissoko, A.; Andji, J.; Soro, Y.; Gbaha, P. CFD Simulation of Double-Pass Solar Dryer with Air Return. J. Phys. Conf. Ser. 2024, 2701, 12076. [CrossRef] Behera, D.D.; Mohanty, R.C.; Mohanty, A.M. Thermal Performance of a Hybrid Solar Dryer Through Experimental and CFD Investigation. J. Food Process Eng. 2023, 46, e14386. [CrossRef] Ahmadi, M.; Samimi-Akhijahani, H.; Salami, P. Thermo-Economic and Drying Kinetic Analysis of Oleaster Using a Solar Dryer Integrated with Phase Change Materials and Recirculation System. J. Energy Storage 2023, 68, 107351. [CrossRef] Rocha, G.A.O.; Medina, A.N.C.; Arias, L.G.; Caita, J.F.A.; Villagran, E. Análisis Sobre La Actividad Científica Referente a Las Estrategias de Climatización Pasiva Usada En Invernaderos: Parte 1: Análisis Bibliométrico. Cienc. Lat. Rev. Científica Multidiscip. 2022, 6, 4596–4623. Ejaz, H.; Zeeshan, H.M.; Ahmad, F.; Bukhari, S.N.A.; Anwar, N.; Alanazi, A.; Sadiq, A.; Junaid, K.; Atif, M.; Abosalif, K.O.A. Bibliometric Analysis of Publications on the Omicron Variant from 2020 to 2022 in the Scopus Database Using R and VOSviewer. Int. J. Environ. Res. Public Health 2022, 19, 12407. [CrossRef] Madsen, D.Ø.; Berg, T.; Di Nardo, M. Bibliometric Trends in Industry 5.0 Research: An Updated Overview. Appl. Syst. Innov. 2023, 6, 63. [CrossRef] Agrawal, A.; Sarviya, R.M. A Review of Research and Development Work on Solar Dryers with Heat Storage. Int. J. Sustain. Energy 2016, 35, 583–605. [CrossRef] Verma, P.; Singal, S.K. Review of Mathematical Modeling on Latent Heat Thermal Energy Storage Systems Using Phase-Change Material. Renew. Sustain. Energy Rev. 2008, 12, 999–1031. [CrossRef] Abi Mathew, A.; Thangavel, V. A Novel Thermal Energy Storage Integrated Evacuated Tube Heat Pipe Solar Dryer for Agricultural Products: Performance and Economic Evaluation. Renew. Energy 2021, 179, 1674–1693. [CrossRef] Venkateswarlu, K.; Reddy, S.V.K. Recent Trends on Energy-Efficient Solar Dryers for Food and Agricultural Products Drying: A Review. Waste Dispos. Sustain. Energy 2024, 6, 335–353. [CrossRef] Sethi, V.P.; Sharma, S.K. Survey and Evaluation of Heating Technologies forWorldwide Agricultural Greenhouse Applications. Sol. Energy 2008, 82, 832–859. [CrossRef] Yadav, S.; Lingayat, A.B.; Chandramohan, V.P.; Raju, V.R.K. Numerical Analysis on Thermal Energy Storage Device to Improve the Drying Time of Indirect Type Solar Dryer. Heat Mass Transf. 2018, 54, 3631–3646. [CrossRef] Radhakrishnan, G.G.; Sattanathan, M.; Radhakrishnan, R.K.G.; Jeevan, A.K. Phase-Change Material-Based Solar Dryer: An Experimental Investigation for Drying Mango Pulp. Sol. Energy 2024, 277, 112716. [CrossRef] Villagran, E.; Ramirez, R.; Rodriguez, A.; Pacheco, R.L.; Jaramillo, J. Simulation of the Thermal and Aerodynamic Behavior of an Established Screenhouse underWarm Tropical Climate Conditions: A Numerical Approach. Int. J. Sustain. Dev. Plan. 2020, 15, 487–499. [CrossRef] Aguilar-Rodríguez, C.E.; Flores-Velázquez, J.; Villagrán, E.; Ramos-Banderas, J.-Á.; Hernández-Bocanegra, C.-A.; Pérez-Inocencio, J. Impact of Crop Height on the Thermal Gradient in a Heated Greenhouse: A Numerical Analysis. DYNA 2024, 99, 1–7. [CrossRef] Villagrán, E.A.; Baeza Romero, E.J.; Bojacá, C.R. Transient CFD Analysis of the Natural Ventilation of Three Types of Greenhouses Used for Agricultural Production in a Tropical Mountain Climate. Biosyst. Eng. 2019, 188, 288–304. [CrossRef] Atribución-NoComercial-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf application/pdf C.I Tibaitatá Multidisciplinary Digital Publishing Institute (MDPI) AgriEngineering; Vol. 6, (2024): AgriEngineering (Octubre);p. 4041-4063. |