Revisiting pest sampling plans in light of economic uncertainty and risk aversion

Decision-making for pest management in agriculture is often assisted by sampling plans that guide users in determining the need for an intervention. Even though Tuta absoluta is easily recognizable by most tomato growers and that several sampling plans have been developed, adoption of decision-makin...

Full description

Bibliographic Details
Main Authors: Rincon, Diego F., Rivera Trujillo, Hugo Fernando, Mojica Ramos, Lorena, Borrero Echeverry, Felipe
Format: article
Language:Inglés
Published: AgriXiv Preprints 2025
Subjects:
Online Access:https://osf.io/preprints/agrixiv/swxpe_v1
http://hdl.handle.net/20.500.12324/40876
https://doi.org/10.31220/osf.io/swxpe
id RepoAGROSAVIA40876
record_format dspace
institution Corporación Colombiana de Investigación Agropecuaria
collection Repositorio AGROSAVIA
language Inglés
topic Plagas de las plantas - H10
Tomate
Gestión de lucha integrada
Pérdida económica
Monitoreo de plaga
Hortalizas y plantas aromáticas
http://aims.fao.org/aos/agrovoc/c_7805
http://aims.fao.org/aos/agrovoc/c_34030
http://aims.fao.org/aos/agrovoc/c_28805
http://aims.fao.org/aos/agrovoc/c_37663
spellingShingle Plagas de las plantas - H10
Tomate
Gestión de lucha integrada
Pérdida económica
Monitoreo de plaga
Hortalizas y plantas aromáticas
http://aims.fao.org/aos/agrovoc/c_7805
http://aims.fao.org/aos/agrovoc/c_34030
http://aims.fao.org/aos/agrovoc/c_28805
http://aims.fao.org/aos/agrovoc/c_37663
Rincon, Diego F.
Rivera Trujillo, Hugo Fernando
Mojica Ramos, Lorena
Borrero Echeverry, Felipe
Revisiting pest sampling plans in light of economic uncertainty and risk aversion
description Decision-making for pest management in agriculture is often assisted by sampling plans that guide users in determining the need for an intervention. Even though Tuta absoluta is easily recognizable by most tomato growers and that several sampling plans have been developed, adoption of decision-making systems for this pest is still incipient. Two potential obstacles for adoption are market uncertainty and farmer’s risk aversion. Both obstacles could be tackled by adopting sampling plans that allow farmers to plan interventions according to rough estimations of economic thresholds and the intuition and experience gained by farmers. In this study, we evaluated four sampling plans using computer simulations and field trials. We compared the efficiency and the ability of each plan to both estimate the actual mean number of larvae per plant and to classify pest populations according to a predefined economic threshold. We also analyzed the time spent, and plants examined by human subjects applying each plan on a tomato crop with a T. absoluta infestation slightly over a predefined economic threshold. We show that sampling plans that deliver the most precise classifications, are poorest in delivering pest density estimations and vice versa. Our findings are consistent for both human subjects and computer simulations. However, the average number of samples required by sampling plans does not reflect the time spent by humans sampling real plants. Our results show that sampling plans based on counts, as opposed to those based on binary data, can efficiently provide reliable information on a current level of T. absoluta infestation relative to an estimated decision threshold. We suggest that sampling plans that promote the creation of farmer’s memory, such as those based on counts, may be more suitable to both reduce risk aversion and increase adaptability to market uncertainty.
format article
author Rincon, Diego F.
Rivera Trujillo, Hugo Fernando
Mojica Ramos, Lorena
Borrero Echeverry, Felipe
author_facet Rincon, Diego F.
Rivera Trujillo, Hugo Fernando
Mojica Ramos, Lorena
Borrero Echeverry, Felipe
author_sort Rincon, Diego F.
title Revisiting pest sampling plans in light of economic uncertainty and risk aversion
title_short Revisiting pest sampling plans in light of economic uncertainty and risk aversion
title_full Revisiting pest sampling plans in light of economic uncertainty and risk aversion
title_fullStr Revisiting pest sampling plans in light of economic uncertainty and risk aversion
title_full_unstemmed Revisiting pest sampling plans in light of economic uncertainty and risk aversion
title_sort revisiting pest sampling plans in light of economic uncertainty and risk aversion
publisher AgriXiv Preprints
publishDate 2025
url https://osf.io/preprints/agrixiv/swxpe_v1
http://hdl.handle.net/20.500.12324/40876
https://doi.org/10.31220/osf.io/swxpe
work_keys_str_mv AT rincondiegof revisitingpestsamplingplansinlightofeconomicuncertaintyandriskaversion
AT riveratrujillohugofernando revisitingpestsamplingplansinlightofeconomicuncertaintyandriskaversion
AT mojicaramoslorena revisitingpestsamplingplansinlightofeconomicuncertaintyandriskaversion
AT borreroecheverryfelipe revisitingpestsamplingplansinlightofeconomicuncertaintyandriskaversion
_version_ 1842255898633830400
spelling RepoAGROSAVIA408762025-04-11T03:01:14Z Revisiting pest sampling plans in light of economic uncertainty and risk aversion Revisiting pest sampling plans in light of economic uncertainty and risk aversion Rincon, Diego F. Rivera Trujillo, Hugo Fernando Mojica Ramos, Lorena Borrero Echeverry, Felipe Plagas de las plantas - H10 Tomate Gestión de lucha integrada Pérdida económica Monitoreo de plaga Hortalizas y plantas aromáticas http://aims.fao.org/aos/agrovoc/c_7805 http://aims.fao.org/aos/agrovoc/c_34030 http://aims.fao.org/aos/agrovoc/c_28805 http://aims.fao.org/aos/agrovoc/c_37663 Decision-making for pest management in agriculture is often assisted by sampling plans that guide users in determining the need for an intervention. Even though Tuta absoluta is easily recognizable by most tomato growers and that several sampling plans have been developed, adoption of decision-making systems for this pest is still incipient. Two potential obstacles for adoption are market uncertainty and farmer’s risk aversion. Both obstacles could be tackled by adopting sampling plans that allow farmers to plan interventions according to rough estimations of economic thresholds and the intuition and experience gained by farmers. In this study, we evaluated four sampling plans using computer simulations and field trials. We compared the efficiency and the ability of each plan to both estimate the actual mean number of larvae per plant and to classify pest populations according to a predefined economic threshold. We also analyzed the time spent, and plants examined by human subjects applying each plan on a tomato crop with a T. absoluta infestation slightly over a predefined economic threshold. We show that sampling plans that deliver the most precise classifications, are poorest in delivering pest density estimations and vice versa. Our findings are consistent for both human subjects and computer simulations. However, the average number of samples required by sampling plans does not reflect the time spent by humans sampling real plants. Our results show that sampling plans based on counts, as opposed to those based on binary data, can efficiently provide reliable information on a current level of T. absoluta infestation relative to an estimated decision threshold. We suggest that sampling plans that promote the creation of farmer’s memory, such as those based on counts, may be more suitable to both reduce risk aversion and increase adaptability to market uncertainty. Tomate-Solanum lycopersicum 2025-04-10T20:27:28Z 2025-04-10T20:27:28Z 2020-02 2020 article Artículo científico http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 https://osf.io/preprints/agrixiv/swxpe_v1 http://hdl.handle.net/20.500.12324/40876 https://doi.org/10.31220/osf.io/swxpe reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA eng AgriXiv 1 22 Barberis NC (2013) Thirty Years of Prospect Theory in Economics: A Review and Assessment. 422 Journal of Economic Perspectives 27 (1):173-196. doi:10.1257/jep.27.1.173 Barzman M, Bàrberi P, Birch ANE, Boonekamp P, Dachbrodt-Saaydeh S, Graf B, Hommel B, Jensen JE, Kiss J, Kudsk P (2015) Eight principles of integrated pest management. Agronomy for Sustainable Development 35 (4):1199-1215. doi:10.1007/s13593-015-0327- 426 9 Binns MR, Nyrop JP, Werf Wvd (2000) Sampling and monitoring in crop protection : the theoretical basis for developing practical decision guides. CABI Pub., Wallingford, Oxon, UK; New York, N.Y. Bonke V, Fecke W, Michels M, Musshoff O (2018) Willingness to pay for smartphone apps facilitating sustainable crop protection. Agronomy for Sustainable Development 38 (5):51. doi:10.1007/s13593-018-0532-4 Cassino P, Perusso J, Rego L, HN S (1995) Proposta metodológica de monitoramento de pragas emtomateiro estaqueado. Anais da Sociedade Entomológica do Brasil 24:279-285 Cocco A, Serra G, Lentini A, Deliperi S, Delrio G (2015) Spatial distribution and sequential sampling plans for Tuta absoluta (Lepidoptera: Gelechiidae) in greenhouse tomato crops. Pest Management Science 71 (9):1311-1323. doi:10.1002/ps.3931 Donado MdP, Soto M, Camelo M, Rincon DF, Espitia E (2017) Riesgos determinados sobre los principales contaminantes químicos y microbiológicos en tomate cultivado bajo condiciones protegidas en los departamentos de Cundinamarca, Boyacá y Antioquia. 441 Informe final de meta: Levantamiento de información primaria para construcción de línea 442 base. Corporación Colombiana de investigación agropecuaria (AGROSAVIA), Mosquera (Cundinamarca) Eichler Inwood SE, Dale VH (2019) State of apps targeting management for sustainability of agricultural landscapes. A review. Agronomy for Sustainable Development 39 (1):8. doi:10.1007/s13593-018-0549-8 Feola G, Binder CR (2010) Identifying and investigating pesticide application types to promote a more sustainable pesticide use. The case of smallholders in Boyacá, Colombia. Crop Protect 29 (6):612-622. doi:10.1016/j.cropro.2010.01.008 Fraser EDG, Campbell M (2019) Agriculture 5.0: Reconciling Production with Planetary Health. One Earth 1 (3):278-280. doi:10.1016/j.oneear.2019.10.022 Haddi K, Berger M, Bielza P, Cifuentes D, Field LM, Gorman K, Rapisarda C, Williamson MS, Bass C (2012) Identification of mutations associated with pyrethroid resistance in the 454 voltage-gated sodium channel of the tomato leaf miner (Tuta absoluta). Insect Biochemistry and Molecular Biology 42 (7):506-513. doi:https://doi.org/10.1016/j.ibmb.2012.03.008 Hoy CW (1991) Variable-Intensity Sampling for Proportion of Plants Infested with Pests. Journal of 457 Economic Entomology 84 (1):148-157. doi:10.1093/jee/84.1.148 Hoy CW, Jennison C, Shelton AM, Andaloro JT (1983) Variable-intensity sampling - a new technique for decision-making in cabbage pest-management. Journal of Economic Entomology 76 (1):139-143 Keller G, Novák V, Willems T (2019) A note on optimal experimentation under risk aversion. Journal of Economic Theory 179:476-487. doi:https://doi.org/10.1016/j.jet.2018.11.006 Lybbert TJ, Magnan N, Gubler WD (2016) Multidimensional Responses to Disease Information: How Do Winegrape Growers React to Powdery Mildew Forecasts and To What Environmental Effect? American Journal of Agricultural Economics 98 (2):383-405. 466 doi:10.1093/ajae/aav097 Morse S (2008) IPM: Ideals and realities in developing countries. In: Radcliffe EB, Cancelado RE, 468 Hutchison WD (eds) Integrated Pest Management: Concepts, Tactics, Strategies and Case 469 Studies. Cambridge University Press, Cambridge, pp 458-470. 470 doi:10.1017/CBO9780511626463.016 Naranjo SE, Chu CC, Henneberry TJ (1996) Economic injury levels for Bemisia tabaci (Homoptera: Aleyrodidae) in cotton: Impact of crop price, control costs, and efficacy of control. Crop Protection 15 (8):779-788 Parsa S, Morse S, Bonifacio A, Chancellor TCB, Condori B, Crespo-Pérez V, Hobbs SLA, Kroschel J, Ba MN, Rebaudo F, Sherwood SG, Vanek SJ, Faye E, Herrera MA, Dangles O (2014) Obstacles to integrated pest management adoption in developing countries. 17 Proceedings of the National Academy of Sciences 477 111 (10):3889-3894. 478 doi:10.1073/pnas.1312693111 Peterson RKD, Higley LG, Pedigo LP (2018) Whatever Happened to IPM? American Entomologist 64 (3):146-150. doi:10.1093/ae/tmy049 Plant RE (1986) Uncertainty and the Economic Threshold. Journal of Economic Entomology 79 (1):1-6. doi:10.1093/jee/79.1.1 Pratt JW, Raiffa H, Schlaifer R (1995) Introduction to Statistical Decision Theory. McGraw Hill, R Core Team (2018) R: A Language and Environment for Statistical Computing. Version 3.5.1. "Feather Spray" edn. R Foundation for Statistical Computing, Vienna, Austria Rincon DF, Vasquez DF, Rivera-Trujillo HF, Beltrán C, Borrero-Echeverry F (2019) Economic injury levels for the potato yellow vein disease and its vector, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae), affecting potato crops in the Andes. Crop Protection 119:52-58. doi:https://doi.org/10.1016/j.cropro.2019.01.002 Rykiel EJ (1996) Testing ecological models: The meaning of validation. Ecological Modelling 90 (3):229-244. doi:10.1016/0304-3800(95)00152-2 Silva GA, Picanço MC, Bacci L, Crespo ALB, Rosado JF, Guedes RNC (2011) Control failure likelihood and spatial dependence of insecticide resistance in the tomato pinworm, Tuta absoluta. Pest Management Science 67 (8):913-920. doi:10.1002/ps.2131 Stonehouse JM (1995) Pesticides, Thresholds and the Smallscale Tropical Farmer. International Journal of Tropical Insect Science 16 (3):259-262. doi:10.1017/s1742758400017264 Torres JB, Faria CA, Evangelista WS, Pratissoli D (2001) Within-plant distribution of the leaf miner Tuta absoluta (Meyrick) immatures in processing tomatoes, with notes on plant phenology. International Journal of Pest Management 47 (3):173-178. doi:10.1080/02670870010011091 Tversky A, Kahneman D (1981) The framing of decisions and the psychology of choice. Science 211 (4481):453-458. doi:10.1126/science.7455683 Viscusi WK (1997) Alarmist Decisions with Divergent Risk Information. The Economic Journal 504 107 (445):1657-1670 Wald A (1945) Sequential Tests of Statistical Hypotheses. The Annals of Mathematical Statistics 16 506 (2):117-186. doi:10.2307/2235829 Atribución-NoComercial-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf application/pdf C.I Tibaitatá AgriXiv Preprints AgriRxiv; (2020):AgriRxiv (Feb.);p. 1 - 22.