Polymers selection for a liquid inoculant of Azospirillum brasilense based on the Arrhenius thermodynamic model

Plant growth promoting bacteria (PGPB) enhances the growth of their hosts and can protect them from biotic and abiotic stresses. Bacterial inoculants contain one or more of these beneficial strains in a carrier material, which must be able to maintain the viability of the cells during the time of st...

Descripción completa

Detalles Bibliográficos
Autores principales: Cortés Patiño, Sandra, Bonilla, Ruth Rebeca
Formato: article
Lenguaje:Inglés
Publicado: African Journals Online 2025
Materias:
Acceso en línea:https://www.ajol.info/index.php/ajb/article/view/121404
http://hdl.handle.net/20.500.12324/40677
id RepoAGROSAVIA40677
record_format dspace
institution Corporación Colombiana de Investigación Agropecuaria
collection Repositorio AGROSAVIA
language Inglés
topic Investigación agropecuaria - A50
Energía de activación
Degradación
Muerte celular
Cinética
Transversal
http://aims.fao.org/aos/agrovoc/c_2a4f12af
http://aims.fao.org/aos/agrovoc/c_2159
http://aims.fao.org/aos/agrovoc/c_49882
http://aims.fao.org/aos/agrovoc/c_6ede19b4
spellingShingle Investigación agropecuaria - A50
Energía de activación
Degradación
Muerte celular
Cinética
Transversal
http://aims.fao.org/aos/agrovoc/c_2a4f12af
http://aims.fao.org/aos/agrovoc/c_2159
http://aims.fao.org/aos/agrovoc/c_49882
http://aims.fao.org/aos/agrovoc/c_6ede19b4
Cortés Patiño, Sandra
Bonilla, Ruth Rebeca
Polymers selection for a liquid inoculant of Azospirillum brasilense based on the Arrhenius thermodynamic model
description Plant growth promoting bacteria (PGPB) enhances the growth of their hosts and can protect them from biotic and abiotic stresses. Bacterial inoculants contain one or more of these beneficial strains in a carrier material, which must be able to maintain the viability of the cells during the time of storage, and also guarantee the biological activity of the strains once applied in the soil. These inoculants can be solid, liquid, gel or oil-based, depending on the characteristics of the strains and the shelf life expected by the producers. In this study, we used a method of accelerated degradation to select a polymer and a concentration to maintain cell stability of a liquid inoculant based on the strain C16 Azospirillum brasilense. A screening at 45°C was made to compare the protectant effect of five polymers on the viability of the strain (p/v): carrageenan (1.5%), sodium alginate (1%), trehalose (10 mM), polyvinylpyrrolidone (2%), glycerol (10 mM) and phosphate saline buffer as control. Carrageenan and sodium alginate showed significant differences in cell viability over the use of other polymers (P < 0.05). We evaluated cell viability with these two polymers at three concentrations and three different temperatures (4, 28 and 45°C) for 60 days and determined the bacterial degradation rates. Based on the Arrhenius thermodynamic model, we calculated the time required to reduce cell concentration in three log units, and observed that the protectant activity of each polymer and each concentration depends on the temperature of storage. Cell viability was best preserved in all treatments at 4°C. In general, alginate prolonged cell viability at 28°C, and carrageenan at 45°C. Alginate at 1% and carrageenan at 0.75% showed a stable behavior (superior to the control) in the three evaluated temperatures, so we conclude that they can be used for a formulation of a liquid inoculant based on the strain C16 of A. brasilense.
format article
author Cortés Patiño, Sandra
Bonilla, Ruth Rebeca
author_facet Cortés Patiño, Sandra
Bonilla, Ruth Rebeca
author_sort Cortés Patiño, Sandra
title Polymers selection for a liquid inoculant of Azospirillum brasilense based on the Arrhenius thermodynamic model
title_short Polymers selection for a liquid inoculant of Azospirillum brasilense based on the Arrhenius thermodynamic model
title_full Polymers selection for a liquid inoculant of Azospirillum brasilense based on the Arrhenius thermodynamic model
title_fullStr Polymers selection for a liquid inoculant of Azospirillum brasilense based on the Arrhenius thermodynamic model
title_full_unstemmed Polymers selection for a liquid inoculant of Azospirillum brasilense based on the Arrhenius thermodynamic model
title_sort polymers selection for a liquid inoculant of azospirillum brasilense based on the arrhenius thermodynamic model
publisher African Journals Online
publishDate 2025
url https://www.ajol.info/index.php/ajb/article/view/121404
http://hdl.handle.net/20.500.12324/40677
work_keys_str_mv AT cortespatinosandra polymersselectionforaliquidinoculantofazospirillumbrasilensebasedonthearrheniusthermodynamicmodel
AT bonillaruthrebeca polymersselectionforaliquidinoculantofazospirillumbrasilensebasedonthearrheniusthermodynamicmodel
_version_ 1842255942734839808
spelling RepoAGROSAVIA406772025-05-21T16:33:49Z Polymers selection for a liquid inoculant of Azospirillum brasilense based on the Arrhenius thermodynamic model Polymers selection for a liquid inoculant of Azospirillum brasilense based on the Arrhenius thermodynamic model Cortés Patiño, Sandra Bonilla, Ruth Rebeca Investigación agropecuaria - A50 Energía de activación Degradación Muerte celular Cinética Transversal http://aims.fao.org/aos/agrovoc/c_2a4f12af http://aims.fao.org/aos/agrovoc/c_2159 http://aims.fao.org/aos/agrovoc/c_49882 http://aims.fao.org/aos/agrovoc/c_6ede19b4 Plant growth promoting bacteria (PGPB) enhances the growth of their hosts and can protect them from biotic and abiotic stresses. Bacterial inoculants contain one or more of these beneficial strains in a carrier material, which must be able to maintain the viability of the cells during the time of storage, and also guarantee the biological activity of the strains once applied in the soil. These inoculants can be solid, liquid, gel or oil-based, depending on the characteristics of the strains and the shelf life expected by the producers. In this study, we used a method of accelerated degradation to select a polymer and a concentration to maintain cell stability of a liquid inoculant based on the strain C16 Azospirillum brasilense. A screening at 45°C was made to compare the protectant effect of five polymers on the viability of the strain (p/v): carrageenan (1.5%), sodium alginate (1%), trehalose (10 mM), polyvinylpyrrolidone (2%), glycerol (10 mM) and phosphate saline buffer as control. Carrageenan and sodium alginate showed significant differences in cell viability over the use of other polymers (P < 0.05). We evaluated cell viability with these two polymers at three concentrations and three different temperatures (4, 28 and 45°C) for 60 days and determined the bacterial degradation rates. Based on the Arrhenius thermodynamic model, we calculated the time required to reduce cell concentration in three log units, and observed that the protectant activity of each polymer and each concentration depends on the temperature of storage. Cell viability was best preserved in all treatments at 4°C. In general, alginate prolonged cell viability at 28°C, and carrageenan at 45°C. Alginate at 1% and carrageenan at 0.75% showed a stable behavior (superior to the control) in the three evaluated temperatures, so we conclude that they can be used for a formulation of a liquid inoculant based on the strain C16 of A. brasilense. Corporation of Agricultural Research - Corpoica 2025-02-12T20:28:37Z 2025-02-12T20:28:37Z 2015 2015 article Artículo científico http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 https://www.ajol.info/index.php/ajb/article/view/121404 1684-5315 http://hdl.handle.net/20.500.12324/40677 reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA eng African Journal of Biotechnology 14 33 2547 2553 Albareda M, Rodríguez-Navarro D, Camacho M, Temprano FJ (2008). Alternatives to peat as a carrier for rhizobia inoculants: Solid and liquid formulations. Soil Biol. Biochem. 40(11):2771-2779. Aquilanti V, Carlos K, Elango M, Kleijn S, Kasai T (2010). Temperature dependence of chemical and biophysical rate processes: Phenomenological approach to deviations from Arrhenius law. Chem. Phys. Lett. 498(1-3):209-213. Bashan Y (1998). Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol. Adv. 16(4):729-770. Bashan Y, Gonzalez LE (1999). Long-term survival of the plant-growth-promoting bacteria Azospirillum brasilense and Pseudomonas fluorescens in dry alginate inoculant. Appl. Microbiol. Biotechnol. 51(2):262-266. Bashan Y, Gonzalez LE (2010). How the Plant Growth-Promoting Bacterium Azospirillum Promotes Plant Growth — A Critical Assessment. Adv. Agron. 1(108):77-136. Baudoin E, Nazaret S, Mougel C, Ranjard L, Moënne-Loccoz Y (2009). Impact of inoculation with the phytostimulatory PGPR Azospirillum lipoferum CRT1 on the genetic structure of the rhizobacterial community of field-grown maize. Soil Biol. Biochem. 41(2):409-413. Cardenas DM, Garrido MF, Bonilla R, Baldani V (2010). Aislamiento e identificación de cepas de Azospirillum sp. en pasto guinea (Panicum maximum Jacq.) del Valle del Cesar. Pastos Y Forrajes 33:3. Cassaan F, Vanderleyden J, Spaepen S (2014). Physiological and Agronomical Aspects of Phytohormone Production by Model Plant-Growth-Promoting Rhizobacteria (PGPR) Belonging to the Genus Azospirillum. J. Plant Growth Regul. 33(2):440-459. Dell AI, Pawar S, Savage VM (2011). Systematic variation in the temperature dependence of physiological and ecological traits. PNAS 108(26):10591-10596. Fibach-Paldi S, Burdman S, Okon Y (2012). Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense. FEMS Microbiol. Lett. 326(2):99-108. Huey RB, Kingsolver JG (2011). Variation in universal temperature dependence of biological rates. PNAS 108(26): 10377-10378. Krumnow AA, Sorokulova IB, Olsen E, Globa, L, Barbaree JM, Vodyanoy VJ (2009). Preservation of bacteria in natural polymers. J. Microbiol. Methods 78(2):189-194. Kumaresan G, Reetha D (2011). Survival of Azospirillum brasilense in liquid formulations amended with different chemical additives. J. Phytol. 3(10):48-45 Leo Daniel A, Venkateswarlu B, Desai S, Hassan M, Meenakshi T (2013). Physiology and pathology effect of polymeric additives, adjuvants, surfactants on survival, stability and Plant-Growth-Promoting ability of liquid bioinoculants. J. Plant Physiol. Pathol. 1(2):2-6. Manikandan R, Saravanakumar D, Rajendran L, Raguchander T, Samiyappan R (2010). Standardization of liquid formulation of Pseudomonas fluorescens Pf1 for its efficacy against Fusarium wilt of tomato. J. Biol. Control 54(2):83-89. Moreno-Galván A, Rojas-Tapias DF, Bonilla R (2012). Development and evaluation of an alternative culture medium for mass cultivation of Azospirillum brasilense C16 using sequential statistical designs. Revista Corpoica 13(2):201-206. Mugilan I, Gayathri P, Elumalai EK, Elango R (2011). Studies on improve survivability and shelf life of carrier using liquid inoculation of Pseudomonas striata. JPBA 2(4):1271-1275. Okon Y, Labandera-González C (1994). Agronomic applications of Azospirillum: an evaluation of 20 years of worldwide field inoculation. Soil Biol. Biochem. 6:1591-1601 Rivera D, Obando M, Barbosa H, Rojas Tapias D, Bonilla R (2014) Evaluation of polymers for the liquid rhizobial formulation and their influence in the Rhizobium-Cowpea interaction. Univ. Sci. 19(3): 265-275. Rojas-Tapias D, Ortega O, Rivera D, Bonilla R (2015). Preservation of Azotobacter chroococcum vegetative cells in dry polymers. Univ. Sci. 20(2):201-207. Rojas-Tapias D, Ortiz-Vera M, Rivera D, Kloepper J, Bonilla R (2013). Evaluation of three methods for preservation of Azotobacter chroococcum and Azotobacter vinelandii. Univ. Sci. 18(2): 129-139. Rouissi T, Tyagi RD, Brar SK, Prevost D, John RP, Surampalli RY (2011). Efficient and simple method for determination of suspendibility of bio-inoculant suspensions. Bioresour. Technol. 102(22): 10754-10758. Sivasakthivelan P, Saranraj P (2013). Azospirillum and its Formulations: A Review. Int. J. Microbiol. Res. 4(3): 275-287. Sorokulova IB, Krumnow AA, Pathirana S (2008). Novel Methods for Storage Stability and Release of Bacillus Spores. Biotechnol. Prog. 24: 1147-1153. Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: Genetic, biochemical and ecological aspects. FEMS Microbiol. Rev. 24(4):487-506. Tittabutr P, Payakapong W, Teaumroong N, Singleton PW, Boonkerd N (2007). Growth, survival and field performance of bradyrhizobial liquid inoculant formulations with polymeric additives. Sci. Asia 33(1):69-77 Velineni S, Brahmaprakash GP (2011). Survival and phosphate solubilizing ability of Bacillus megaterium in liquid inoculants under high temperature and desiccation stress. J. Agric. Sci. Technol. 13(5):795-802. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571-586. Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf application/pdf African Journals Online African Journal of Biotechnology; Vol. 14, Núm. 33 (2025): African Journal of Biotechnology ;p. 2547-2553.