Upscaling Gross Primary Production from Leaf to Canopy for Potato Crop (Solanum tuberosum L.)

Estimating gross primary production (GPP) is important to understand the land–atmosphere CO2 exchange for major agroecosystems. Eddy covariance (EC) measurements provide accurate and reliable information about GPP, but flux measurements are often not available. Upscaling strategies gain importanc...

Descripción completa

Detalles Bibliográficos
Autores principales: Martínez-Maldonado, Fabio Ernesto, Castaño Marín, Angela María, Góez Vinasco, Gerardo Antonio, Ricardo Marin, Fabio
Formato: article
Lenguaje:Inglés
Publicado: MDPI 2025
Materias:
Acceso en línea:https://www.mdpi.com/2225-1154/10/9/127
http://hdl.handle.net/20.500.12324/40599
https://doi.org/10.3390/ cli10090127
id RepoAGROSAVIA40599
record_format dspace
institution Corporación Colombiana de Investigación Agropecuaria
collection Repositorio AGROSAVIA
language Inglés
topic Cultivo - F01
Solanum tuberosum
Cultivo
Productividad primaria
Metodología
Raíces y tubérculos
http://aims.fao.org/aos/agrovoc/c_7221
http://aims.fao.org/aos/agrovoc/c_1972
http://aims.fao.org/aos/agrovoc/c_34328
http://aims.fao.org/aos/agrovoc/c_12522
spellingShingle Cultivo - F01
Solanum tuberosum
Cultivo
Productividad primaria
Metodología
Raíces y tubérculos
http://aims.fao.org/aos/agrovoc/c_7221
http://aims.fao.org/aos/agrovoc/c_1972
http://aims.fao.org/aos/agrovoc/c_34328
http://aims.fao.org/aos/agrovoc/c_12522
Martínez-Maldonado, Fabio Ernesto
Castaño Marín, Angela María
Góez Vinasco, Gerardo Antonio
Ricardo Marin, Fabio
Upscaling Gross Primary Production from Leaf to Canopy for Potato Crop (Solanum tuberosum L.)
description Estimating gross primary production (GPP) is important to understand the land–atmosphere CO2 exchange for major agroecosystems. Eddy covariance (EC) measurements provide accurate and reliable information about GPP, but flux measurements are often not available. Upscaling strategies gain importance as an alternative to the limitations of the use of the EC. Although the potato provides an important agroecosystem for worldwide carbon balance, there are currently no studies on potato GPP upscaling processes. This study reports two GPP scaling-up approaches from the detailed leaf-level characterization of gas exchange of potatoes. Multilayer and big leaf approaches were applied for extrapolating chamber and biometric measurements from leaf to canopy. Measurements of leaf area index and photosynthesis were performed from planting to the end of the canopy life cycle using an LP-80 ceptometer and an IRGA Li-Cor 6800, respectively. The results were compared to concurrent measurements of surface–atmosphere GPP from the EC measurements. Big-leaf models were able to simulate the general trend of GPP during the growth cycle, but they overestimated the GPP during the maximum LAI phase. Multilayer models correctly reproduced the behavior of potato GPP and closely predicted both: the daily magnitude and half-hourly variation in GPP when compared to EC measurements. Upscaling is a reliable alternative, but a good treatment of LAI and the photosynthetic light-response curves are decisive factors to achieve better GPP estimates. The results improved the knowledge of the biophysical control in the carbon fluxes of the potato crop.
format article
author Martínez-Maldonado, Fabio Ernesto
Castaño Marín, Angela María
Góez Vinasco, Gerardo Antonio
Ricardo Marin, Fabio
author_facet Martínez-Maldonado, Fabio Ernesto
Castaño Marín, Angela María
Góez Vinasco, Gerardo Antonio
Ricardo Marin, Fabio
author_sort Martínez-Maldonado, Fabio Ernesto
title Upscaling Gross Primary Production from Leaf to Canopy for Potato Crop (Solanum tuberosum L.)
title_short Upscaling Gross Primary Production from Leaf to Canopy for Potato Crop (Solanum tuberosum L.)
title_full Upscaling Gross Primary Production from Leaf to Canopy for Potato Crop (Solanum tuberosum L.)
title_fullStr Upscaling Gross Primary Production from Leaf to Canopy for Potato Crop (Solanum tuberosum L.)
title_full_unstemmed Upscaling Gross Primary Production from Leaf to Canopy for Potato Crop (Solanum tuberosum L.)
title_sort upscaling gross primary production from leaf to canopy for potato crop (solanum tuberosum l.)
publisher MDPI
publishDate 2025
url https://www.mdpi.com/2225-1154/10/9/127
http://hdl.handle.net/20.500.12324/40599
https://doi.org/10.3390/ cli10090127
work_keys_str_mv AT martinezmaldonadofabioernesto upscalinggrossprimaryproductionfromleaftocanopyforpotatocropsolanumtuberosuml
AT castanomarinangelamaria upscalinggrossprimaryproductionfromleaftocanopyforpotatocropsolanumtuberosuml
AT goezvinascogerardoantonio upscalinggrossprimaryproductionfromleaftocanopyforpotatocropsolanumtuberosuml
AT ricardomarinfabio upscalinggrossprimaryproductionfromleaftocanopyforpotatocropsolanumtuberosuml
_version_ 1842255990632742912
spelling RepoAGROSAVIA405992025-05-16T13:31:57Z Upscaling Gross Primary Production from Leaf to Canopy for Potato Crop (Solanum tuberosum L.) Upscaling Gross Primary Production from Leaf to Canopy for Potato Crop (Solanum tuberosum L.) Martínez-Maldonado, Fabio Ernesto Castaño Marín, Angela María Góez Vinasco, Gerardo Antonio Ricardo Marin, Fabio Cultivo - F01 Solanum tuberosum Cultivo Productividad primaria Metodología Raíces y tubérculos http://aims.fao.org/aos/agrovoc/c_7221 http://aims.fao.org/aos/agrovoc/c_1972 http://aims.fao.org/aos/agrovoc/c_34328 http://aims.fao.org/aos/agrovoc/c_12522 Estimating gross primary production (GPP) is important to understand the land–atmosphere CO2 exchange for major agroecosystems. Eddy covariance (EC) measurements provide accurate and reliable information about GPP, but flux measurements are often not available. Upscaling strategies gain importance as an alternative to the limitations of the use of the EC. Although the potato provides an important agroecosystem for worldwide carbon balance, there are currently no studies on potato GPP upscaling processes. This study reports two GPP scaling-up approaches from the detailed leaf-level characterization of gas exchange of potatoes. Multilayer and big leaf approaches were applied for extrapolating chamber and biometric measurements from leaf to canopy. Measurements of leaf area index and photosynthesis were performed from planting to the end of the canopy life cycle using an LP-80 ceptometer and an IRGA Li-Cor 6800, respectively. The results were compared to concurrent measurements of surface–atmosphere GPP from the EC measurements. Big-leaf models were able to simulate the general trend of GPP during the growth cycle, but they overestimated the GPP during the maximum LAI phase. Multilayer models correctly reproduced the behavior of potato GPP and closely predicted both: the daily magnitude and half-hourly variation in GPP when compared to EC measurements. Upscaling is a reliable alternative, but a good treatment of LAI and the photosynthetic light-response curves are decisive factors to achieve better GPP estimates. The results improved the knowledge of the biophysical control in the carbon fluxes of the potato crop. Papa-Solanum tuberosum 2025-01-24T16:45:39Z 2025-01-24T16:45:39Z 2022-08-29 2022 article Artículo científico http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 https://www.mdpi.com/2225-1154/10/9/127 2225-1154 http://hdl.handle.net/20.500.12324/40599 https://doi.org/10.3390/ cli10090127 reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA eng Climate 10 9 1 15 Arkebauer, T.J.; Walter-Shea, E.A.; Mesarch, M.A.; Suyker, A.E.; Verma, S.B. Scaling up of CO2 fluxes from leaf to canopy in maize-based agroecosystems. Agric. For. Meteorol. 2009, 149, 2110–2119. [CrossRef] Suyker, A.E.; Verma, S.B.; Burba, G.G.; Arkebauer, T.J. Gross primary production and ecosystem respiration of irrigated maize and irrigated soybean during a growing season. Agric. For. Meteorol. 2005, 131, 180–190. [CrossRef] Teubner, I.E.; Forkel, M.; Camps-Valls, G.; Jung, M.; Miralles, D.G.; Tramontana, G.; van der Schalie, R.; Vreugdenhil, M.; Mösinger, L.; Dorigo,W.A. A carbon sink-driven approach to estimate gross primary production from microwave satellite observations. Remote Sens. Environ. 2019, 229, 100–113. [CrossRef] Wagle, P.; Xiao, X.; Suyker, A.E. Estimation and analysis of gross primary production of soybean under various management practices and drought conditions. ISPRS J. Photogramm. Remote Sens. 2015, 99, 70–83. [CrossRef] Wagle, P.; Gowda, P.H.; Anapalli, S.S.; Reddy, K.N.; Northup, B.K. Growing season variability in carbon dioxide exchange of irrigated and rainfed soybean in the southern United States. Sci. Total Environ. 2017, 593–594, 263–273. [CrossRef] Jiang, X.; Kang, S.; Tong, L.; Li, F.; Li, D.; Ding, R.; Qiu, R. Crop coefficient and evapotranspiration of grain maize modified by planting density in an arid region of northwest China. Agric. Water Manag. 2014, 142, 135–143. [CrossRef] Malhi, Y.; Aragão, L.E.O.C.; Metcalfe, D.B.; Paiva, R.; Quesada, C.A.; Almeida, S.; Anderson, L.; Brando, P.; Chambers, J.Q.; da Costa, A.C.L.; et al. Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests. Glob. Chang. Biol. 2009, 15, 1255–1274. [CrossRef] Martínez-Maldonado, F.E.; Castaño-Marin, A.M.; Góez-Vinasco, G.A.; Marin, F.R. Gross Primary Production of Rainfed and Irrigated Potato (Solanum tuberosum L.) in the Colombian Andean Region Using Eddy Covariance Technique. Water 2021, 13, 3223. [CrossRef] Eamus, D.; Huete, A.; Yu, Q. Modelling Leaf and Canopy Photosynthesis. Veg. Dyn. 2016, 260–280. Ran, L.; Pleim, J.; Song, C.; Band, L.; Walker, J.T.; Binkowski, F.S. A photosynthesis-based two-leaf canopy stomatal conductance model for meteorology and air quality modeling with WRF/CMAQ PX LSM. J. Geophys. Res. 2017, 122, 1930–1952. [CrossRef] Waldo, S.; Chi, J.; Pressley, S.N.; O’Keeffe, P.; Pan,W.L.; Brooks, E.S.; Huggins, D.R.; Stöckle, C.O.; Lamb, B.K. Assessing carbon dynamics at high and low rainfall agricultural sites in the inland Pacific Northwest US using the eddy covariance method. Agric. For. Meteorol. 2016, 218–219, 25–36. [CrossRef] Goudriaan, J. A simple and fast numerical method for the computation of daily totals of crop photosynthesis. Agric. For. Meteorol. 1986, 38, 249–254. [CrossRef] Hoyaux, J.; Moureaux, C.; Tourneur, D.; Bodson, B.; Aubinet, M. Extrapolating gross primary productivity from leaf to canopy scale in a winter wheat crop. Agric. For. Meteorol. 2008, 148, 668–679. [CrossRef] Monsi, M.; Saeki, T.; Schortemeyer, M. On the factor light in plant communities and its importance for matter production. Ann. Bot. 2005, 95, 549–567. [CrossRef] [PubMed] Moureaux, C.; Debacq, A.; Hoyaux, J.; Suleau, M.; Tourneur, D.; Vancutsem, F.; Bodson, B.; Aubinet, M. Carbon balance assessment of a Belgian winter wheat crop (Triticum aestivum L.). Glob. Chang. Biol. 2008, 14, 1353–1366. [CrossRef] Raulier, F.; Bernier, P.Y.; Ung, C.H. Canopy photosynthesis of sugar maple (Acer saccharum): Comparing big-leaf and multilayer extrapolations of leaf-level measurements. Tree Physiol. 1999, 19, 407–420. [CrossRef] Bonan, G.B.; Patton, E.G.; Finnigan, J.J.; Baldocchi, D.D.; Harman, I.N. Moving beyond the incorrect but useful paradigm: Reevaluating big-leaf and multilayer plant canopies to model biosphere-atmosphere fluxes – a review. Agric. For. Meteorol. 2021, 306, 108435. [CrossRef] Eamus, D.; Huete, A.; Yu, Q. Modelling Radiation Exchange and Energy Balances of Leaves and Canopies. Veg. Dyn. 2016, 0, 244–259. [CrossRef] Chen, F.; Dudhia, J. Coupling and advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [CrossRef] Jarvis, P.G. Scaling processes and problems. Plant. Cell Environ. 1995, 18, 1079–1089. [CrossRef] Lloyd, J.; Grace, J.; Miranda, A.C.; Meir, P.; Wong, S.C.; Miranda, H.S.; Wright, I.R.; Gash, J.H.C.; McIntyre, J. A simple calibrated model of Amazon rainforest productivity based on leaf biochemical properties. Plant. Cell Environ. 1995, 18, 1129–1145. [CrossRef] Luo, X.; Chen, J.M.; Liu, J.; Black, T.A.; Croft, H.; Staebler, R.; He, L.; Arain, M.A.; Chen, B.; Mo, G.; et al. Comparison of Big-Leaf, Two-Big-Leaf, and Two-Leaf Upscaling Schemes for Evapotranspiration Estimation Using Coupled Carbon-Water Modeling. J. Geophys. Res. BiogeoSci. 2018, 123, 207–225. [CrossRef] Pleim, J.; Xiu, A. Development and testing of a surface flux and planetary boundary layer model for application in mesoscale models. J. Appl. Meteorol. 1995, 34, 16–32. [CrossRef] De Pury, D.G.G.; Farquhar, G.D. Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell Environ. 1997, 20, 537–557. [CrossRef] Wang, Y.; Leuning, R. A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy I: Model description and comparison with a multi-layered model. Agric. For. Meteorol. 1998, 91, 89–111. [CrossRef] Chen, N.; Wang, A.; An, J.; Zhang, Y.; Ji, R.; Jia, Q.; Zhao, Z.; Guan, D. Modeling Canopy Carbon and Water Fluxes Using a Multilayered Model over a Temperate Meadow in Inner Mongolia. Int. J. Plant Prod. 2020, 14, 141–154. [CrossRef] Kobayashi, H.; Baldocchi, D.D.; Ryu, Y.; Chen, Q.; Ma, S.; Osuna, J.L.; Ustin, S.L. Modeling energy and carbon fluxes in a heterogeneous oak woodland: A three-dimensional approach. Agric. For. Meteorol. 2012, 152, 83–100. [CrossRef] Liu, L.; Liu, X.; Chen, J.; Du, S.; Ma, Y.; Qian, X.; Chen, S.; Peng, D. Estimating maize GPP using near-infrared radiance of vegetation. Sci. Remote Sens. 2020, 2, 100009. [CrossRef] Meyers, T.P.; Hollinger, S.E. An assessment of storage terms in the surface energy balance of maize and soybean. Agric. For. Meteorol. 2004, 125, 105–115. [CrossRef] Campbell, G.S. Derivation of an angle density function for canopies with ellipsoidal leaf angle distributions. Agric. For. Meteorol. 1990, 49, 173–176. [CrossRef] Campbell, G.S.; Norman, J.M. An Introduction to Environmental Biophysics, 2nd ed.; Springer-Verlag, Ed.; Springer: Pullman, WA, USA, 1998; Volume 6, ISBN 0387949372. Bonan, G. Leaf Photosynthesis and Stomatal Conductance. In Ecological Climatology; Cambridge University Press: Cambridge, UK, 2015; pp. 241–263 ISBN 9781107339200. Norman, J.M.;Welles, J.M.; McDermitt, D.K. Estimating canopy light-use and transpiration efficiencies from leaf measurements. LICOR Appl. Note 1991, 105, 19. Medlyn, B.; Barrett, D.; Landsberg, J.; Sands, P.; Clement, R. Conversion of canopy intercepted radiation to photosynthate: Review of modelling approaches for regional scales. Funct. Plant Biol. 2003, 30, 153–169. [CrossRef] [PubMed] Mercado, L.; Lloyd, J.; Carswell, F.; Malhi, Y.; Meir, P.; Nobre, A.D. Modelling Amazonian forest eddy covariance data: A comparison of big leaf versus sun/shade models for the C-14 tower at Manaus I. Canopy photosynthesis. Acta Amaz. 2006, 36, 69–82. [CrossRef] Sprintsin, M.; Chen, J.M.; Desai, A.; Gough, C.M. Evaluation of leaf-to-canopy upscaling methodologies against carbon flux data in North America. J. Geophys. Res. Biogeosci. 2012, 117, 1–17. [CrossRef] Jennings, S.A.; Koehler, A.K.; Nicklin, K.J.; Deva, C.; Sait, S.M.; Challinor, A.J. Global Potato Yields Increase Under Climate Change With Adaptation and CO2 Fertilisation. Front. Sustain. Food Syst. 2020, 4, 519324. [CrossRef] Quiroz, R.; Ramírez, D.A.; Kroschel, J.; Andrade-Piedra, J.; Barreda, C.; Condori, B.; Mares, V.; Monneveux, P.; Perez, W. Impact of climate change on the potato crop and biodiversity in its center of origin. Open Agric. 2018, 3, 273–283. [CrossRef] Velez Betancourt, A.F. Estado del arte de la cadena de valor de la papa en Colombia. In Cadenas Sostenibles Ante un Clima Cambiante. La Papa en Colombia; Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Oficinas: Bogotá, Colombia, 2020; p. 102 ISBN 9789588945545. Campos, H.; Ortiz, O. The Potato Crop: Its Agricultural, Nutritional and Social Contribution to Humankind; Springer Nature: Berlin, Germany, 2019; ISBN 9783030286835. Mosquera Vásquez, T.; Del Castillo, S.; Gálvez, D.C.; Rodríguez, L.E. Breeding Differently: Participatory Selection and Scaling Up Innovations in Colombia. Potato Res. 2017, 60, 361–381. [CrossRef] Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014; ISBN 0926487221. Falge, E.; Baldocchi, D.; Olson, R.; Anthoni, P.; Aubinet, M.; Bernhofer, C.; Burba, G.; Ceulemans, R.; Clement, R.; Dolman, H.; et al. Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric. For. Meteorol. 2001, 107, 43–69. [CrossRef] Tagesson, T.; Fensholt, R.; Cropley, F.; Guiro, I.; Horion, S.; Ehammer, A.; Ardö, J. Dynamics in carbon exchange fluxes for a grazed semi-arid savanna ecosystem in West Africa. Agric. Ecosyst. Environ. 2015, 205, 15–24. [CrossRef] Wang, Y.P.; Jarvis, P.G. Mean leaf angles for the ellipsoidal inclination angle distribution. Agric. For. Meteorol. 1988, 43, 319–321. [CrossRef] Baly, E.C.C. The Kinetics of Photosynthesis. Proc. R. Soc. 1935, 117, 218–239. [CrossRef] Smith, E.L. Photosynthesis in Relation to Light and Carbon Dioxide. Proc. Natl. Acad. Sci. USA 1936, 504–511. [CrossRef] [PubMed] Jassby, A.D.; Platt, T. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr. 1976, 21, 540–547. [CrossRef] Webb, W.L.; Newton, M.; Starr, D.; Url, S. Carbon Dioxide Exchange of Alnus rubra. A Mathematical Model. Int. Assoc. Ecol. 1974, 17, 281–291. Lobo, F. de A.; de Barros, M.P.; Dalmagro, H.J.; Dalmolin, Â.C.; Pereira, W.E.; de Souza, É.C.; Vourlitis, G.L.; Rodríguez Ortíz, C.E. Fitting net photosynthetic light-response curves with Microsoft Excel - a critical look at the models. Photosynthetica 2013, 51, 445–456. [CrossRef] Bonan, G. Mathematical Formulation of Biological Flux Rates. In Climate Change and Terrestrial Ecosystem Modeling; Cambridge University Press: Cambridge, UK, 2019; pp. 53–63 ISBN 9781107339217. Sellers, P.J.; Berry, J.A.; Collatz, G.J.; Field, C.B.; Hall, F.G. Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a new canopy integration scheme. Remote Sens. Environ. 1992, 42, 187–216. [CrossRef] Luo, Y.; Hui, D.; Cheng,W.; Coleman, J.S.; Johnson, D.W.; Sims, D.A. Canopy quantum yield in a mesocosm study. Agric. For. Meteorol. 2000, 100, 35–48. [CrossRef] Singsaas, E.L.; Ort, D.R.; DeLucia, E.H. Variation in measured values of photosynthetic quantum yield in ecophysiological studies. Oecologia 2001, 128, 15–23. [CrossRef] Park S, N. Achievable productivities of certain CAM plants: Basis for high values compared with C3 and C4 plants. Neew Phytol. 1991, 119, 183–205. [CrossRef] Fang, L.; Zhang, S.; Zhang, G.; Liu, X.; Xia, X.; Zhang, S.; Xing,W.; Fang, X. Application of Five Light-Response Models in the Photosynthesis of Populus Euramericana cv. ‘Zhonglin460 Leaves. Appl. Biochem. Biotechnol. 2015, 176, 86–100. [CrossRef] Ye, Z.P.; Duan, S.H.; Chen, X.M.; Duan, H.L.; Gao, C.P.; Kang, H.J.; An, T.; Zhou, S.X. Quantifying light response of photosynthesis: Addressing the long-standing limitations of non-rectangular hyperbolic model. Photosynthetica 2021, 59, 185–191. [CrossRef] Ye, Z.; Zhao, Z. A modified rectangular hyperbola to describe the light-response curve of photosynthesis of Bidens pilosa L. grown under low and high light conditions. Front. Agric. China 2010, 4, 50–55. [CrossRef] dos Santos Junior, U.M.; de Carvalho Gonçalves, J.F.; Fearnside, P.M. Measuring the impact of flooding on Amazonian trees: Photosynthetic response models for ten species flooded by hydroelectric dams. Trees-Struct. Funct. 2013, 27, 193–210. [CrossRef] Aubinet, M.; Chermanne, B.; Vandenhaute, M.; Longdoz, B.; Yernaux, M.; Laitat, E. Long term carbon dioxide exchange above a mixed forest in the Belgian Ardennes. Agric. For. Meteorol. 2001, 108, 293–315. [CrossRef] Moureaux, C.; Debacq, A.; Bodson, B.; Heinesch, B.; Aubinet, M. Annual net ecosystem carbon exchange by a sugar beet crop. Agric. For. Meteorol. 2006, 139, 25–39. [CrossRef] Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf application/pdf Colombia MDPI Climate; Vol. 10, Núm. 9 (2022): Climate (Aug);p. 1 - 15.