Modeling cell size regulation under complex and dynamic environments

In nature, cells face changes in environmental conditions that can modify their growth rate. In these dynamic environments, recent experiments found changes in cell size regulation. Currently, there are few clues about the origin of these cell size changes. In this work, we model cell division as a...

Descripción completa

Detalles Bibliográficos
Autores principales: Nieto, Cesar, Vargas García, Cesar, Pedraza, Juan Manuel, Singh, Abhyudai
Formato: article
Lenguaje:Inglés
Publicado: Cold Sprimg Harbor Laboratory - CSH 2024
Materias:
Acceso en línea:https://www.biorxiv.org/content/10.1101/2022.09.09.507356v1.article-info
http://hdl.handle.net/20.500.12324/40334
https://doi.org/10.1101/2022.09.09.507356
id RepoAGROSAVIA40334
record_format dspace
institution Corporación Colombiana de Investigación Agropecuaria
collection Repositorio AGROSAVIA
language Inglés
topic Investigación agropecuaria - A50
Célula
Medio ambiente
Tasa de crecimiento
Termorregulación
Transversal
http://aims.fao.org/aos/agrovoc/c_1418
http://aims.fao.org/aos/agrovoc/c_2593
http://aims.fao.org/aos/agrovoc/c_16130
http://aims.fao.org/aos/agrovoc/c_7722
spellingShingle Investigación agropecuaria - A50
Célula
Medio ambiente
Tasa de crecimiento
Termorregulación
Transversal
http://aims.fao.org/aos/agrovoc/c_1418
http://aims.fao.org/aos/agrovoc/c_2593
http://aims.fao.org/aos/agrovoc/c_16130
http://aims.fao.org/aos/agrovoc/c_7722
Nieto, Cesar
Vargas García, Cesar
Pedraza, Juan Manuel
Singh, Abhyudai
Modeling cell size regulation under complex and dynamic environments
description In nature, cells face changes in environmental conditions that can modify their growth rate. In these dynamic environments, recent experiments found changes in cell size regulation. Currently, there are few clues about the origin of these cell size changes. In this work, we model cell division as a stochastic process that occurs at a rate proportional to the size. We propose that this rate is zero if the cell is smaller than a minimum size. We show how this model predicts some of the properties found in cell size regulation. For example, among our predictions, we found that the mean cell size is an exponential function of the growth rate under steady conditions. We predict that cells become smaller and the way the division strategy changes during dynamic nutrient depletion. Finally, we use the model to predict cell regulation in an arbitrary complex dynamic environment.
format article
author Nieto, Cesar
Vargas García, Cesar
Pedraza, Juan Manuel
Singh, Abhyudai
author_facet Nieto, Cesar
Vargas García, Cesar
Pedraza, Juan Manuel
Singh, Abhyudai
author_sort Nieto, Cesar
title Modeling cell size regulation under complex and dynamic environments
title_short Modeling cell size regulation under complex and dynamic environments
title_full Modeling cell size regulation under complex and dynamic environments
title_fullStr Modeling cell size regulation under complex and dynamic environments
title_full_unstemmed Modeling cell size regulation under complex and dynamic environments
title_sort modeling cell size regulation under complex and dynamic environments
publisher Cold Sprimg Harbor Laboratory - CSH
publishDate 2024
url https://www.biorxiv.org/content/10.1101/2022.09.09.507356v1.article-info
http://hdl.handle.net/20.500.12324/40334
https://doi.org/10.1101/2022.09.09.507356
work_keys_str_mv AT nietocesar modelingcellsizeregulationundercomplexanddynamicenvironments
AT vargasgarciacesar modelingcellsizeregulationundercomplexanddynamicenvironments
AT pedrazajuanmanuel modelingcellsizeregulationundercomplexanddynamicenvironments
AT singhabhyudai modelingcellsizeregulationundercomplexanddynamicenvironments
_version_ 1842255659389681664
spelling RepoAGROSAVIA403342024-10-30T03:00:47Z Modeling cell size regulation under complex and dynamic environments Modeling cell size regulation under complex and dynamic environments Nieto, Cesar Vargas García, Cesar Pedraza, Juan Manuel Singh, Abhyudai Investigación agropecuaria - A50 Célula Medio ambiente Tasa de crecimiento Termorregulación Transversal http://aims.fao.org/aos/agrovoc/c_1418 http://aims.fao.org/aos/agrovoc/c_2593 http://aims.fao.org/aos/agrovoc/c_16130 http://aims.fao.org/aos/agrovoc/c_7722 In nature, cells face changes in environmental conditions that can modify their growth rate. In these dynamic environments, recent experiments found changes in cell size regulation. Currently, there are few clues about the origin of these cell size changes. In this work, we model cell division as a stochastic process that occurs at a rate proportional to the size. We propose that this rate is zero if the cell is smaller than a minimum size. We show how this model predicts some of the properties found in cell size regulation. For example, among our predictions, we found that the mean cell size is an exponential function of the growth rate under steady conditions. We predict that cells become smaller and the way the division strategy changes during dynamic nutrient depletion. Finally, we use the model to predict cell regulation in an arbitrary complex dynamic environment. 2024-10-29T20:07:30Z 2024-10-29T20:07:30Z 2022-09-13 2022 article Artículo científico http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 https://www.biorxiv.org/content/10.1101/2022.09.09.507356v1.article-info http://hdl.handle.net/20.500.12324/40334 https://doi.org/10.1101/2022.09.09.507356 reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA eng BioRxiv 1 1 1 8 Amir, A. (2014). Cell size regulation in bacteria. Physical review letters, 112(20), 208102. Bakshi, S., Leoncini, E., Baker, C., Ca˜nas-Duarte, S.J., Okumus, B., and Paulsson, J. (2021). Tracking bacterial lineages in complex and dynamic environments with applications for growth control and persistence. Nature Microbiology, 6(6), 783–791. Blanco, C., Nieto, C., Vargas, C., and Pedraza, J. (2020). Pyecolib: a python library for simulating e. coli stochastic size dynamics. bioRxiv. B¨uke, F., Grilli, J., Lagomarsino, M.C., Bokinsky, G., and Tans, S.J. (2022). ppgpp is a bacterial cell size regulator. Current Biology, 32(4), 870–877. Campos, M., Surovtsev, I.V., Kato, S., Paintdakhi, A., Beltran, B., Ebmeier, S.E., and Jacobs-Wagner, C. (2014). A constant size extension drives bacterial cell size homeostasis. Cell, 159(6), 1433–1446. Chien, A.C., Hill, N., and Levin, P. (2012). Cell size control in bacteria. Current biology, 22(9), R340–R349. Ghusinga, K.R., Vargas-Garcia, C.A., and Singh, A. (2016). A mechanistic stochastic framework for regulating bacterial cell division. Scientific reports, 6(1), 1–9. Grover, J.P., HUDZIAK, J., and Grover, J.D. (1997). Resource competition, volume 19. Springer Science & Business Media. Harris, L.K. and Theriot, J.A. (2018). Surface area to volume ratio: a natural variable for bacterial morphogenesis. Trends in microbiology, 26(10), 815–832. Ho, P.Y. and Amir, A. (2015). Simultaneous regulation of cell size and chromosome replication in bacteria. Frontiers in microbiology, 6, 662. Iyer-Biswas, S., Crooks, G.E., Scherer, N.F., and Dinner, A.R. (2014a). Universality in stochastic exponential growth. Physical review letters, 113(2), 028101. Iyer-Biswas, S., Wright, C.S., Henry, J.T., Lo, K., Burov, S., Lin, Y., Crooks, G.E., Crosson, S., Dinner, A.R., and Scherer, N.F. (2014b). Scaling laws governing stochastic growth and division of single bacterial cells. Proceedings of the National Academy of Sciences, 111(45), 15912– 15917. Jia, C., Singh, A., and Grima, R. (2021). Concentration fluctuations due to size-dependent gene expression and cell-size control mechanisms. BioRxiv. Jun, S., Si, F., Pugatch, R., and Scott, M. (2018). Fundamental principles in bacterial physiology—history, recent progress, and the future with focus on cell size control: a review. Reports on Progress in Physics, 81(5), 056601. Kiviet, D.J., Nghe, P., Walker, N., Boulineau, S., Sunderlikova, V., and Tans, S.J. (2014). Stochasticity of metabolism and growth at the single-cell level. Nature, 514(7522), 376–379. Koch, A.L. (1971). The adaptive responses of escherichia coli to a feast and famine existence. In Advances in microbial physiology, volume 6, 147–217. Elsevier. Lennon, J.T. and Jones, S.E. (2011). Microbial seed banks: the ecological and evolutionary implications of dormancy. Nature reviews microbiology, 9(2), 119–130. Modi, S., Vargas-Garcia, C.A., Ghusinga, K.R., and Singh, A. (2017). Analysis of noise mechanisms in cell-size control. Biophysical journal, 112(11), 2408–2418. Morita, R. (1990). The starvation-survival state of microorganisms in nature and its relationship to the bioavailable energy. Experientia, 46(8), 813–817. Munsky, B., Li, G., Fox, Z.R., Shepherd, D.P., and Neuert, G. (2018). Distribution shapes govern the discovery of predictive models for gene regulation. Proceedings of the National Academy of Sciences, 115(29), 7533–7538. Navarro Llorens, J.M., Tormo, A., and Mart´ınez-Garc´ıa, E. (2010). Stationary phase in gram-negative bacteria. FEMS microbiology reviews, 34(4), 476–495. Nev, O.A., Lindsay, R.J., Jepson, A., Butt, L., Beardmore, R.E., and Gudelj, I. (2021). Predicting microbial growth dynamics in response to nutrient availability. PLoS computational biology, 17(3), e1008817. Nieto, C., Arias-Castro, J., S´anchez, C., Vargas-Garc´ıa, C., and Pedraza, J.M. (2020a). Unification of cell division control strategies through continuous rate models. Physical Review E, 101(2), 022401. Nieto, C., Arias-Castro, J., Vargas-Garc´ıa, C., S´anchez, C., and Pedraza, J.M. (2020b). Noise signature in added size suggests bacteria target a commitment size to enable division. bioRxiv. Nieto, C., Arias-Castro, J.C., Sanchez, C., Vargas-Garcia, C., Singh, A., and Pedraza, J.M. (2022a). The role of division stochasticity on the robustness of bacterial size dynamics. bioRxiv. Nieto, C., Vargas-Garcia, C., Pedraza, J., and Singh, A. (2022b). Cell size regulation and proliferation fluctuations in single-cell derived colonies. bioRxiv. Nieto, C., Vargas-Garcia, C., and Pedraza, J.M. (2021). Continuous rate modeling of bacterial stochastic size dynamics. Physical Review E, 104(4), 044415. Osella, M., Nugent, E., and Cosentino Lagomarsino, M. (2014). Concerted control of escherichia coli cell division. Proceedings of the National Academy of Sciences, 111(9), 3431–3435. Saarinen, K., Laakso, J., Lindstr¨om, L., and Ketola, T. (2018). Adaptation to fluctuations in temperature by nine species of bacteria. Ecology and Evolution, 8(5), 2901–2910. Sanders, S., Joshi, K., Levin, P., and Iyer-Biswas, S. (2022). Single cells tell their own story: An updated framework for understanding stochastic variations in cell cycle progression in bacteria. bioRxiv. Sauls, J.T., Li, D., and Jun, S. (2016). Adder and a coarsegrained approach to cell size homeostasis in bacteria. Current opinion in cell biology, 38, 38–44. Schaechter, M., Maaløe, O., and Kjeldgaard, N.O. (1958). Dependency on medium and temperature of cell size and chemical composition during balanced growth of salmonella typhimurium. Microbiology, 19(3), 592–606. Sekar, K., Rusconi, R., Sauls, J.T., Fuhrer, T., Noor, E., Nguyen, J., Fernandez, V.I., Buffing, M.F., Berney, M., Jun, S., et al. (2018). Synthesis and degradation of ftsz quantitatively predict the first cell division in starved bacteria. Molecular systems biology, 14(11), e8623. Shimaya, T., Okura, R., Wakamoto, Y., and Takeuchi, K.A. (2021). Scale invariance of cell size fluctuations in starving bacteria. Communications Physics, 4(1), 1– 12. Si, F., Le Treut, G., Sauls, J.T., Vadia, S., Levin, P.A., and Jun, S. (2019). Mechanistic origin of cell-size control and homeostasis in bacteria. Current Biology, 29(11), 1760–1770. Si, F., Li, D., Cox, S.E., Sauls, J.T., Azizi, O., Sou, C., Schwartz, A.B., Erickstad, M.J., Jun, Y., Li, X., et al. (2017). Invariance of initiation mass and predictability of cell size in escherichia coli. Current Biology, 27(9), 1278–1287. Soifer, I., Robert, L., and Amir, A. (2016). Single-cell analysis of growth in budding yeast and bacteria reveals a common size regulation strategy. Current Biology, 26(3), 356–361. Taheri-Araghi, S., Bradde, S., Sauls, J.T., Hill, N.S., Levin, P.A., Paulsson, J., Vergassola, M., and Jun, S. (2015). Cell-size control and homeostasis in bacteria. Current biology, 25(3), 385–391. Thomas, P. and Shahrezaei, V. (2021). Coordination of gene expression noise with cell size: analytical results for agent-based models of growing cell populations. Journal of the Royal Society Interface, 18(178), 20210274. Totis, N., Nieto, C., K¨uper, A., Vargas-Garc´ıa, C., Singh, A., and Waldherr, S. (2020). A population-based approach to study the effects of growth and division rates on the dynamics of cell size statistics. IEEE Control Systems Letters, 5(2), 725–730. Vadia, S. and Levin, P.A. (2015). Growth rate and cell size: a re-examination of the growth law. Current opinion in microbiology, 24, 96–103. Vahdat, Z., Xu, Z., and Singh, A. (2021). Modeling protein concentrations in cycling cells using stochastic hybrid systems. IFAC-PapersOnLine, 54(9), 521–526. Vargas-Garcia, C.A., Ghusinga, K.R., and Singh, A. (2018). Cell size control and gene expression homeostasis in single-cells. Current opinion in systems biology, 8, 109–116. Vargas-Garcia, C.A., Soltani, M., and Singh, A. (2016). Conditions for cell size homeostasis: a stochastic hybrid system approach. IEEE Life Sciences Letters, 2(4), 47– 50. Wallden, M., Fange, D., Lundius, E.G., Baltekin, ¨ O., and Elf, J. (2016). The synchronization of replication and division cycles in individual e. coli cells. Cell, 166(3), 729–739. Wang, P., Robert, L., Pelletier, J., Dang, W.L., Taddei, F., Wright, A., and Jun, S. (2010). Robust growth of escherichia coli. Current biology, 20(12), 1099–1103. Witz, G., van Nimwegen, E., and Julou, T. (2019). Initiation of chromosome replication controls both division and replication cycles in e. coli through a double-adder mechanism. Elife, 8, e48063. Xia, M., Greenman, C.D., and Chou, T. (2020). Pde models of adder mechanisms in cellular proliferation. SIAM journal on applied mathematics, 80(3), 1307– 1335. Zheng, H., Ho, P.Y., Jiang, M., Tang, B., Liu, W., Li, D., Yu, X., Kleckner, N.E., Amir, A., and Liu, C. (2016). Interrogating the escherichia coli cell cycle by cell dimension perturbations. Proceedings of the National Academy of Sciences, 113(52), 15000–15005. Zwietering, M., Jongenburger, I., Rombouts, F., and Van’t Riet, K. (1990). Modeling of the bacterial growth curve. Applied and environmental microbiology, 56(6), 1875–1881. Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf application/pdf Colombia Cold Sprimg Harbor Laboratory - CSH BioRxiv; (2022): BioRxiv (Sep.);p. 1 - 8.