Estimating real snakebite incidence in Colombia by using mathematical modelling and statistical inference

Snakebite envenoming is a Neglected Tropical Disease affecting mainly deprived populations. Its burden is normally underestimated because patients prefer to seek for traditional medicine. Thus, applying strategies to optimize disease’ management and treatment delivery is difficult. We propose a fram...

Descripción completa

Detalles Bibliográficos
Autores principales: Bravo Vega, Carlos, Renjifo Ibañez, Camila, Santos Vega, Mauricio, Leon Nuñez, Leonardo Jose, Angarita Sierra, Teddy, Cordovez, Juan Manuel
Formato: article
Lenguaje:Inglés
Publicado: Cold Sprimg Harbor Laboratory - CSH 2024
Materias:
Acceso en línea:https://www.biorxiv.org/content/10.1101/2021.12.09.472006v1.full
http://hdl.handle.net/20.500.12324/40233
https://doi.org/10.1101/2021.12.09.472006
id RepoAGROSAVIA40233
record_format dspace
institution Corporación Colombiana de Investigación Agropecuaria
collection Repositorio AGROSAVIA
language Inglés
topic Investigación agropecuaria - A50
Serpiente
Envenenamiento
Enfermedad
Transversal
http://aims.fao.org/aos/agrovoc/c_14209
http://aims.fao.org/aos/agrovoc/c_6051
http://aims.fao.org/aos/agrovoc/c_49879
spellingShingle Investigación agropecuaria - A50
Serpiente
Envenenamiento
Enfermedad
Transversal
http://aims.fao.org/aos/agrovoc/c_14209
http://aims.fao.org/aos/agrovoc/c_6051
http://aims.fao.org/aos/agrovoc/c_49879
Bravo Vega, Carlos
Renjifo Ibañez, Camila
Santos Vega, Mauricio
Leon Nuñez, Leonardo Jose
Angarita Sierra, Teddy
Cordovez, Juan Manuel
Estimating real snakebite incidence in Colombia by using mathematical modelling and statistical inference
description Snakebite envenoming is a Neglected Tropical Disease affecting mainly deprived populations. Its burden is normally underestimated because patients prefer to seek for traditional medicine. Thus, applying strategies to optimize disease’ management and treatment delivery is difficult. We propose a framework to estimate snakebite incidence at a fine political scale based on available data, testing it in Colombia. First, we produced snakebite fine-scale risk maps based on the most medically important venomous snake species (Bothrops asper and B. atrox). We validated them with reported data in the country. Then, we proposed a generalized mixed effect model that estimates total incidence based on produced risk maps, poverty indexes, and an accessibility score that reflects the struggle to reach a medical center. Finally, we calibrated our model with national snakebite reported data from 2010 to 2019 using a Markov chain Monte Carlo (MCMC) algorithm and estimated underreporting based on the total incidence estimation. Our results suggest that 10.3% of total snakebite cases are not reported in Colombia and do not seek medical attention. The Orinoco and Amazonian regions (east of Colombia) share a high snakebite risk with a high underreporting. Our work highlights the importance of multidisciplinary approaches to face snakebite.
format article
author Bravo Vega, Carlos
Renjifo Ibañez, Camila
Santos Vega, Mauricio
Leon Nuñez, Leonardo Jose
Angarita Sierra, Teddy
Cordovez, Juan Manuel
author_facet Bravo Vega, Carlos
Renjifo Ibañez, Camila
Santos Vega, Mauricio
Leon Nuñez, Leonardo Jose
Angarita Sierra, Teddy
Cordovez, Juan Manuel
author_sort Bravo Vega, Carlos
title Estimating real snakebite incidence in Colombia by using mathematical modelling and statistical inference
title_short Estimating real snakebite incidence in Colombia by using mathematical modelling and statistical inference
title_full Estimating real snakebite incidence in Colombia by using mathematical modelling and statistical inference
title_fullStr Estimating real snakebite incidence in Colombia by using mathematical modelling and statistical inference
title_full_unstemmed Estimating real snakebite incidence in Colombia by using mathematical modelling and statistical inference
title_sort estimating real snakebite incidence in colombia by using mathematical modelling and statistical inference
publisher Cold Sprimg Harbor Laboratory - CSH
publishDate 2024
url https://www.biorxiv.org/content/10.1101/2021.12.09.472006v1.full
http://hdl.handle.net/20.500.12324/40233
https://doi.org/10.1101/2021.12.09.472006
work_keys_str_mv AT bravovegacarlos estimatingrealsnakebiteincidenceincolombiabyusingmathematicalmodellingandstatisticalinference
AT renjifoibanezcamila estimatingrealsnakebiteincidenceincolombiabyusingmathematicalmodellingandstatisticalinference
AT santosvegamauricio estimatingrealsnakebiteincidenceincolombiabyusingmathematicalmodellingandstatisticalinference
AT leonnunezleonardojose estimatingrealsnakebiteincidenceincolombiabyusingmathematicalmodellingandstatisticalinference
AT angaritasierrateddy estimatingrealsnakebiteincidenceincolombiabyusingmathematicalmodellingandstatisticalinference
AT cordovezjuanmanuel estimatingrealsnakebiteincidenceincolombiabyusingmathematicalmodellingandstatisticalinference
_version_ 1842255803711488000
spelling RepoAGROSAVIA402332024-10-17T03:01:00Z Estimating real snakebite incidence in Colombia by using mathematical modelling and statistical inference Estimating real snakebite incidence in Colombia by using mathematical modelling and statistical inference Bravo Vega, Carlos Renjifo Ibañez, Camila Santos Vega, Mauricio Leon Nuñez, Leonardo Jose Angarita Sierra, Teddy Cordovez, Juan Manuel Investigación agropecuaria - A50 Serpiente Envenenamiento Enfermedad Transversal http://aims.fao.org/aos/agrovoc/c_14209 http://aims.fao.org/aos/agrovoc/c_6051 http://aims.fao.org/aos/agrovoc/c_49879 Snakebite envenoming is a Neglected Tropical Disease affecting mainly deprived populations. Its burden is normally underestimated because patients prefer to seek for traditional medicine. Thus, applying strategies to optimize disease’ management and treatment delivery is difficult. We propose a framework to estimate snakebite incidence at a fine political scale based on available data, testing it in Colombia. First, we produced snakebite fine-scale risk maps based on the most medically important venomous snake species (Bothrops asper and B. atrox). We validated them with reported data in the country. Then, we proposed a generalized mixed effect model that estimates total incidence based on produced risk maps, poverty indexes, and an accessibility score that reflects the struggle to reach a medical center. Finally, we calibrated our model with national snakebite reported data from 2010 to 2019 using a Markov chain Monte Carlo (MCMC) algorithm and estimated underreporting based on the total incidence estimation. Our results suggest that 10.3% of total snakebite cases are not reported in Colombia and do not seek medical attention. The Orinoco and Amazonian regions (east of Colombia) share a high snakebite risk with a high underreporting. Our work highlights the importance of multidisciplinary approaches to face snakebite. 2024-10-16T20:59:44Z 2024-10-16T20:59:44Z 2021-12-10 2021 article Artículo científico http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 https://www.biorxiv.org/content/10.1101/2021.12.09.472006v1.full http://hdl.handle.net/20.500.12324/40233 https://doi.org/10.1101/2021.12.09.472006 reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA eng BioRxiv 1 1 1 34 1.↵Rojas G, Bogarin G, Gutierrez JM. Snakebite mortality in Costa Rica. Toxicon. 1997 Nov;35(11):1639–43.PubMedGoogle Scholar 2.↵Fernandez P, Gutierrez JM. Mortality due to snakebite envenomation in Costa Rica (1993-2006). Toxicon. 2008 Sep;52(3):530–3.PubMedGoogle Scholar 3.↵Chippaux JP. Snakebite envenomation turns again into a neglected tropical disease! J Venom Anim Toxins Incl Trop Dis. 2017;23(1):1–2.Google Scholar 4.↵Winkel KKasturiratne A, Wickremasinghe AR, de Silva N, Gunawardena NK, Pathmeswaran A, Premaratna R, et al. The Global Burden of Snakebite: A Literature Analysis and Modelling Based on Regional Estimates of Envenoming and Deaths. Winkel K, editor. PLoS Med [Internet]. 2008 Nov 4 [cited 2020 Mar 1];5(11):e218. Available from: https://dx.plos.org/10.1371/journal.pmed.0050218Google Scholar 5.↵Lalloo DG, Theakston RDG. Snake antivenoms. Vol. 41, Journal of Toxicology - Clinical Toxicology. 2003. p. 277–90.CrossRefPubMedWeb of ScienceGoogle Scholar 6.↵Otero R, Tobón GS, Gómez LF, Osorio R, Valderrama R, Hoyos D, et al. Accidente ofídico en Antioquia y Chocó. Acta Médica Colomb. 1992;17(4):229–49.Google Scholar 7.↵Angarita-Sierra T, Montañez-Méndez A, Toro-Sánchez T, Rodríguez-Vargas A. A case of envenomation by the false fer-de-lance snake Leptodeira annulata (Linnaeus, 1758) in the department of La Guajira, Colombia. Biomedica [Internet]. 2020 Mar 1 [cited 2021 Jun 9];40(1):20–6. Available from: https://doi.org/10.7705/biomedica.4773Google Scholar 8.↵WHO. Rabies and envenomings : a neglected public health issue : report of a Consultative Meeting. Who [Internet]. 2007;(January):32. Available from: http://www.who.int/bloodproducts/animal_sera/Rabies.pdfGoogle Scholar 9.↵Gutierrez JM, Williams D, Fan HW, Warrell DA. Snakebite envenoming from a global perspective: Towards an integrated approach. Toxicon. 2010 Dec;56(7):1223–35.CrossRefPubMedGoogle Scholar 10.↵Gutiérrez JM, Warrell DA, Williams DJ, Jensen S, Brown N, Calvete JJ, et al. The Need for Full Integration of Snakebite Envenoming within a Global Strategy to Combat the Neglected Tropical Diseases: The Way Forward. PLoS Negl Trop Dis [Internet]. 2013 Jun 13;7(6):e2162. Available from: https://doi.org/10.1371/journal.pntd.0002162Google Scholar 11.↵Otero R, Fonnegra R, Jimenez SL, Nunez V, Evans N, Alzate SP, et al. Snakebites and ethnobotany in the northwest region of Colombia: Part I: traditional use of plants. J Ethnopharmacol. 2000 Aug;71(3):493–504.CrossRefPubMedWeb of ScienceGoogle Scholar 12.↵Gutierrez JM, Fan HW, Silvera CLM, Angulo Y. Stability, distribution and use of antivenoms for snakebite envenomation in Latin America: report of a workshop. Toxicon. 2009 May;53(6):625–30.CrossRefPubMedGoogle Scholar 13.↵Gutiérrez JM. Improving antivenom availability and accessibility: Science, technology, and beyond. Toxicon [Internet]. 2012 Sep 15 [cited 2020 Mar 1];60(4):676–87. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22781134Google Scholar 14.↵World health organization. Snakebite envenoming a strategy for prevention and control [Internet]. Geneva: World health organization; 2019 [cited 2020 Nov 20]. Available from: http://apps.who.int/bookorders.Google Scholar 15.↵Hürlimann E, Schur N, Boutsika K, Stensgaard AS, de Himpsl ML, Ziegelbauer K, et al. Toward an open-access global database for mapping, control, and surveillance of neglected tropical diseases. PLoS Negl Trop Dis. 2011 Dec;5(12).Google Scholar 16.↵Bravo-Vega CA, Cordovez JM, Renjifo-Ibáñez C, Santos-Vega M, Sasa M. Estimating snakebite incidence from mathematical models: A test in Costa Rica. Bottazzi ME, editor. PLoS Negl Trop Dis [Internet]. 2019 Dec 2 [cited 2019 Dec 11];13(12):e0007914. Available from: https://dx.plos.org/10.1371/journal.pntd.0007914Google Scholar 17.↵Hossain J, Biswas A, Rahman F, Mashreky SR, Dalal K, Rahman A. Snakebite Epidemiology in Bangladesh—A National Community Based Health and Injury Survey. Health (Irvine Calif) [Internet]. 2016 Mar 15 [cited 2018 Oct 18];08(05):479–86. Available from: http://www.scirp.org/journal/doi.aspx?DOI=10.4236/health.2016.85051Google Scholar 18.↵Sinha A, Bhattacharya S, Ram R, Dasgupta U, Ram A, Majumder D. Epidemiological profile of snake bite in South 24 Parganas district of West Bengal with focus on underreporting of snake bite deaths. Indian J Public Health [Internet]. 2014 [cited 2020 Mar 2];58(1):17. Available from: http://www.ijph.in/text.asp?2014/58/1/17/128158Google Scholar 19.↵Yañez-Arenas C, Peterson AT, Mokondoko P, Rojas-Soto O, Martínez-Meyer E. The Use of Ecological Niche Modeling to Infer Potential Risk Areas of Snakebite in the Mexican State of Veracruz. PLoS One [Internet]. 2014 Jun 25;9(6):e100957. Available from: https://doi.org/10.1371/journal.pone.0100957Google Scholar 20.↵Yañez-Arenas C, Townsend Peterson A, Rodríguez-Medina K, Barve N. Mapping current and future potential snakebite risk in the new world. Clim Change [Internet]. 2016;134(4):697–711. Available from: https://doi.org/10.1007/s10584-015-1544-6Google Scholar 21.↵Ferro C, López M, Fuya P, Lugo L, Cordovez JM, González C. Spatial Distribution of Sand Fly Vectors and Eco-Epidemiology of Cutaneous Leishmaniasis Transmission in Colombia. PLoS One [Internet]. 2015 Oct 2;10(10):e0139391. Available from: https://doi.org/10.1371/journal.pone.0139391Google Scholar 22.↵Sinka ME, Rubio-Palis Y, Manguin S, Patil AP, Temperley WH, Gething PW, et al. The dominant Anopheles vectors of human malaria in the Americas: occurrence data, distribution maps and bionomic précis. Parasit Vectors [Internet]. 2010;3(1):72. Available from: https://doi.org/10.1186/1756-3305-3-72Google Scholar 23.↵Uetz P, Hošek J. THE REPTILE DATABASE [Internet]. [cited 2018 Oct 18]. Available from: http://www.reptile-database.org/Google Scholar 24.Dunn ER. Los Géneros de Anfibios y reptiles de Colombia, III: Tercera Parte: Reptiles; Orden de las Serpientes. Caldasia; Vol 3, Núm 12 [Internet]. 1944 Oct 1; Available from: https://revistas.unal.edu.co/index.php/cal/article/view/32115Google Scholar 25.↵Campbell JA, Lamar WW. The venomous reptiles of the Western Hemisphere. United States of America: Comstock Pub. Associates; 2004. 870 p.Google Scholar 26.↵Rodríguez-Vargas AL, Rodriguez-Buitrago J, Diaz GJ. Comportamiento general de los accidentes provocados por animales venenosos en Colombia, 2006-2010. Rev salud pública. 2012;14(6):1001–9.Google Scholar 27.↵Patiño RO, Hernández RV, Osorio RG, Posada LE. Programa de atención primaria del accidente ofídico: una propuesta para Colombia. Iatreia. 1992;5(2):96–102.Google Scholar 28.↵Otero-Patino R. Epidemiological, clinical and therapeutic aspects of Bothrops asper bites. Toxicon. 2009 Dec;54(7):998–1011.CrossRefPubMedGoogle Scholar 29.↵Charry-Restrepo H. Epidemiología del accidente ofídico en Colombia. Temas de Toxinologia. 2006;1–14.Google Scholar 30.Sasa M, Vazquez S. Snakebite envenomation in Costa Rica: a revision of incidence in the decade 1990-2000. Toxicon. 2003 Jan;41(1):19–22.CrossRefPubMedGoogle Scholar 31.↵Valencia J, Garzón-Tello K, Barragán-Paladínes M. Serpientes venenosas del Ecuador: sistemática, taxonomía, historia natural, conservación. Envenenamiento y aspectos antropológicos [Internet]. 1st ed. Quito: Fundación Herpetológica Gustavo Orcés; 2016 [cited 2018 Oct 18]. Available from: http://biblioteca.udla.edu.ec/client/en_US/default/search/detailnonmodal?qu=Barragán-Paladines%2C+María+Elena&d=ent%3A%2F%2FSD_ILS%2F0%2FSD_ILS%3A29363∼∼0&ic=true&te=ILS&ps=300Google Scholar 32.↵Sant’Ana Malaque CM, Gutiérrez JM. Snakebite Envenomation in Central and South America. In: Critical Care Toxicology. Cham: Springer International Publishing; 2015. p. 1–22.Google Scholar 33.↵Chippaux J-P. Incidence and mortality due to snakebite in the Americas. Gutiérrez JM, editor. PLoS Negl Trop Dis [Internet]. 2017 Jun 21 [cited 2018 Sep 7];11(6):e0005662. Available from: http://dx.plos.org/10.1371/journal.pntd.0005662Google Scholar 34.↵Lynch JD. El contexto de las serpientes en Colombia con un análisis de las amenazas en contra de su conservación. Rev Colomb Cienc [Internet]. 2012;36(140):435–49. Available from: http://www.scielo.org.co/pdf/racefn/v36n140/v36n140a09.pdfGoogle Scholar 35.↵Lynch JD, Angarita-Sierra T, Ruiz-Gómez FJ. Programa nacional para la conservación de las serpientes presentes en Colombia. Bogotá: © Ministerio de Ambiente y Desarrollo Sostenible, Colombia © Universidad Nacional de Colombia. Instituto de Ciencias Naturales © Instituto Nacional de Salud.; 2016.Google Scholar 36.↵Nuñez León LJ. Informe Del Evento Accidente Ofidico, Colombia, 2016. Inst Nac Salud-SIVIGILA. 2016;33.Google Scholar 37.↵Nuñez León LJ, Camero-Ramos G, Gutierrez JM. Epidemiology of snakebites in Colombia (2008-2016). Rev Salud Pública [Internet]. 2020 May 30 [cited 2020 Nov 20];22(3):1–8. Available from: https://doi.org/10.15446/rsap.V22n3.87005Google Scholar 38.↵Castrillón-Estrada DF, Acosta Vélez JG, Hernández-Ruiz EA, Palacio LMA. Envenenamiento ofídico. Salud Uninorte. 2007;23(1):96–111.Google Scholar 39.↵Hansson E, Cuadra S, Oudin A, de Jong K, Stroh E, Torén K, et al. Mapping Snakebite Epidemiology in Nicaragua – Pitfalls and Possible Solutions. PLoS Negl Trop Dis [Internet]. 2010 Nov 23;4(11):e896. Available from: https://doi.org/10.1371/journal.pntd.0000896Google Scholar 40.↵Guerrero R, Gallego AI, Becerril-Montekio V, Vásquez J. Sistema de salud de Colombia. Vol. 53, Salud Pública de México. scielomx ; 2011. p. s144–55.Google Scholar 41.↵Gutiérrez JM, Fan HW. Improving the control of snakebite envenomation in Latin America and the Caribbean: A discussion on pending issues [Internet]. Vol. 112, Transactions of the Royal Society of Tropical Medicine and Hygiene. Oxford University Press; 2018 [cited 2020 Oct 1]. p. 523–6. Available from: https://academic.oup.com/trstmh/article/112/12/523/5096868Google Scholar 42.↵Gutiérrez JM, Theakston RDG, Warrell DA. Confronting the Neglected Problem of Snake Bite Envenoming: The Need for a Global Partnership. PLOS Med [Internet]. 2006 Jun 6;3(6):e150. Available from: https://doi.org/10.1371/journal.pmed.0030150Google Scholar 43.↵de Valpine P, Turek D, Paciorek CJ, Anderson-Bergman C, Lang DT, Bodik R. Programming With Models: Writing Statistical Algorithms for General Model Structures With NIMBLE. J Comput Graph Stat [Internet]. 2017 Apr 3 [cited 2020 Nov 24];26(2):403–13. Available from: https://www.tandfonline.com/doi/abs/10.1080/10618600.2016.1172487Google Scholar 44.↵Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol [Internet]. 2005 Dec 1 [cited 2018 Oct 18];25(15):1965–78. Available from: http://doi.wiley.com/10.1002/joc.1276Google Scholar 45.↵Abatzoglou JT, Dobrowski SZ, Parks SA, Hegewisch KC. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Sci Data. 2018 Jan 9;5(1):1–12.Google Scholar 46.↵Peterson AT, Papeş M, Soberón J. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol Modell [Internet]. 2008;213(1):63–72. Available from: http://www.sciencedirect.com/science/article/pii/S0304380007006163Google Scholar 47.↵Mischler P, Kearney M, McCarroll JC, Scholte RGC, Vounatsou P, Malone JB. Environmental and socio-economic risk modelling for Chagas disease in Bolivia. Geospat Health. 2012 Sep;6(3):S59–66.PubMedGoogle Scholar 48.↵Hansson E, Sasa M, Mattisson K, Robles A, Gutiérrez JM. Using Geographical Information Systems to Identify Populations in Need of Improved Accessibility to Antivenom Treatment for Snakebite Envenoming in Costa Rica. PLoS Negl Trop Dis [Internet]. 2013 Jan 31;7(1):e2009. Available from: https://doi.org/10.1371/journal.pntd.0002009Google Scholar 49.↵Chaves LF, Chuang T-W, Sasa M, Gutiérrez JM. Snakebites are associated with poverty, weather fluctuations, and El Niño. Sci Adv [Internet]. 2015 Sep 1;1(8). Available from: http://advances.sciencemag.org/content/1/8/e1500249.abstractGoogle Scholar 50.Ediriweera DS, Diggle PJ, Kasturiratne A, Pathmeswaran A, Gunawardena NK, Jayamanne SF, et al. Evaluating temporal patterns of snakebite in Sri Lanka: the potential for higher snakebite burdens with climate change. Int J Epidemiol [Internet]. 2018 Sep 11 [cited 2018 Oct 7]; Available from: https://academic.oup.com/ije/advance-article/doi/10.1093/ije/dyy188/5094971Google Scholar 51.Molesworth AM, Harrison R, David R, Theakston G, Lalloo DG. Geographic information system mapping of snakebite incidence in northern Ghana and Nigeria using environmental indicators: a preliminary study. Trans R Soc Trop Med Hyg [Internet]. 2003 Mar [cited 2018 Oct 7];97(2):188–92. Available from: https://academic.oup.com/trstmh/article-lookup/doi/10.1016/S0035-9203(03)90115-5Google Scholar 52.↵Shashar S, Yitshak-Sade M, Sonkin R, Novack V, Jaffe E. The Association Between Heat Waves and Other Meteorological Parameters and Snakebites: Israel National Study. J Emerg Med [Internet]. 2018 Jun 1;54(6):819–26. Available from: https://www.sciencedirect.com/science/article/pii/S0736467918301112Google Scholar 53.↵Pérez GJ. La infraestructura del transporte vial y la movilización de carga en Colombia [Internet]. Documentos de trabajo sobre economia regional. Cartagena: Banco de la república; 2005 [cited 2019 Dec 11]. Available from: http://www.banrep.gov.co/docum/Lectura_finanzas/pdf/DTSER-64.pdfGoogle Scholar 54.Grupo de Planeación en la Salud Pública - Ministerio de salud. CONTEXTO GENERAL DE LOS PUEBLOS INDÍGENAS: ASPECTOS SOCIO CULTURALES. DEMOGRÁFICOS, AMBIENTALES, TERRITORIALES Y DE SALUD. Bogotá, D.C: Ministerio de salud; 2017.Google Scholar 55.↵Dirección de Desarrollo Rural Sostenible - DDRS. Departamento Nacional de Planeación. MISIÓN PARA LA TRANSFORMACIÓN DEL CAMPO Definición de Categorías de Ruralidad. 2014.Google Scholar 56.↵Harrison RA, Hargreaves A, Wagstaff SC, Faragher B, Lalloo DG. Snake envenoming: a disease of poverty. PLoS Negl Trop Dis. 2009 Dec;3(12):e569.CrossRefPubMedGoogle Scholar 57.↵da Silva CJ, Jorge MT, Ribeiro LA. Epidemiology of snakebite in a central region of Brazil. Toxicon. 2003 Feb;41(2):251–5.PubMedGoogle Scholar 58.↵Fry BG. Snakebite: When the human touch becomes a bad touch [Internet]. Vol. 10, Toxins. MDPI AG; 2018 [cited 2021 Feb 1]. p. 170. Available from: /pmc/articles/PMC5923336/?report=abstractGoogle Scholar 59.↵Gutiérrez JMAlcântara JA, Bernarde PS, Sachett J, da Silva AM, Valente SF, Peixoto HM, et al. Stepping into a dangerous quagmire: Macroecological determinants of Bothrops envenomings, Brazilian Amazon. Gutiérrez JM, editor. PLoS One [Internet]. 2018 Dec 6 [cited 2019 Dec 11];13(12):e0208532. Available from: http://dx.plos.org/10.1371/journal.pone.0208532Google Scholar 60. Fraga R de, Magnusson WE, Abrahão CR, Sanaiotti T, Lima AP. Habitat Selection by Bothrops atrox (Serpentes: Viperidae) in Central Amazonia, Brazil. Copeia. 2013 Dec 30;2013(4):684–90.Google Scholar 61.Meisel A, Leonardo R, Andrés B, Jabba S. Geografía económica de la Amazonia Colombiana. Documentos de trabajo sobre economía regional; 2013.Google Scholar 62.↵Armenteras D, Rudas G, Rodriguez N, Sua S, Romero M. Patterns and causes of deforestation in the Colombian Amazon. Ecol Indic. 2006 Apr;6(2):353–68.Google Scholar 63.↵ M Oliveira E, Martins M. When and where to find a pitviper: activity patterns and habitat use of the lancehead, Bothrops atrox, in Central Amazonia, Brazil. Vol. 8, Herpetological Natural History. 2001. 101–109 p.Google Scholar 64.↵Sasa M, Wasko DK, Lamar WW. Natural history of the terciopelo Bothrops asper (Serpentes: Viperidae) in Costa Rica. Toxicon. 2009 Dec;54(7):904–22.PubMedGoogle Scholar 65.↵Wasko DK, Sasa M. Habitat Selection of the Terciopelo (Serpentes: Viperidae: Bothrops asper) in a Lowland Rainforest in Costa Rica. https://doi.org/101655/08-064R21 [Internet]. 2010 Jun 1 [cited 2021 Oct 21];66(2):148–58. Available from: https://bioone.org/journals/herpetologica/volume-66/issue-2/08-064R2.1/Habitat-Selection-of-the-Terciopelo-Serpentes--Viperidae--Bothrops/10.1655/08-064R2.1.fullGoogle Scholar 66.↵Gelman A, Rubin DB. Inference from iterative simulation using multiple sequences. Stat Sci [Internet]. 1992 [cited 2020 Nov 24];7(4):457–72. Available from: https://projecteuclid.org/euclid.ss/1177011136Google Scholar 67.↵Vats D, Knudson C. Revisiting the Gelman-Rubin Diagnostic. 2018 Dec 21 [cited 2020 Nov 24]; Available from: http://arxiv.org/abs/1812.09384Google Scholar 68.↵Perfetti Del Corral Director M, LUZ Cardenas Fonseca Secretaria General Directores M, Efraín Freire Delgado E, Paola Gómez Acosta A, Buitrago Hoyos G, Ricardo Valenzuela Gutiérrez R, et al. MANUAL DE USO DEL MARCO GEOESTADÍSTICO NACIONAL DANE [Internet]. 2018 [cited 2018 Sep 21]. Available from: https://www.sen.gov.co/files/RegulacionEstadistica/Manual_MGN.pdfGoogle Scholar 69.↵Gerardo CJ, Evans CS, Kuchibhatla M, Mando-Vandrick J, Drake WG, Yen M, et al. Time to antivenom administration is not associated with total antivenom dose administered in a copperhead-predominant snakebite population. Acad Emerg Med. 2015 Mar;22(3):308–14.Google Scholar 70.↵Gerardo CJ, Evans CS, Kuchibhatla M, Drake WG, Mando-Vandrick JD, Yen M, et al. Time to Antivenom Administration in Snakebite. Ann Emerg Med [Internet]. 2013 Oct 1 [cited 2018 Sep 19];62(4):S44. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0196064413010822Google Scholar 71.↵ LÓPEZ Nilson, LOPERA Clara RÁ. Características de los pacientes con accidente ofídico y complicaciones infecciosas atendidos en el Hospital Pablo Tobón Uribe entre los años 2000 y 2006. Acta Médica Colomb. 2008;33:127–30.Google Scholar 72.↵Warrell DA, Arnett C. The importance of bites by the saw scaled or carpet viper (Echis carinatus): Epidemiological studies in Nigeria and a review of the world. Acta Trop [Internet]. 1976 Jan 1 [cited 2020 Nov 25];33(4):307–41. Available from: http://europepmc.org/article/MED/14490Google Scholar 73.↵Kularatne AM, Silva A, Maduwage K, Ratnayake I, Walathara C, Ratnayake C, et al. Victims’ response to snakebite and socio-epidemiological factors of 1018 snakebites in a tertiary care hospital in Sri Lanka. Wilderness Environ Med. 2014 Mar;25(1):35–40.Google Scholar 74.Ramírez JC, De Aguas JM. Escalafón de la competitividad de los departamentos de Colombia 2015: Versión en edición. Of la CEPAL en Colomb. 2015;107.Google Scholar 75.↵Pérez Gerson. Dimensión espacial de la pobreza en Colombia. Doc Trab sobre Econ Reg [Internet]. 2005;(54):54. Available from: http://www.banrep.gov.co/sites/default/files/publicaciones/archivos/DTSER-54.pdfGoogle Scholar 76.↵Sarmiento K. Aspectos biomédicos del accidente ofídico. Univ Méd Bogotá Colomb. 2012;53 (1):68–85.Google Scholar 77.Pineda D, Ghotme K, Aldeco ME, Montoya P. Accidentes ofídicos en Yopal y Leticia, Colombia, 1996-1997. Biomédica [Internet]. 2002;22(1):14. Available from: http://www.revistabiomedica.org/index.php/biomedica/article/view/1135Google Scholar 78.↵Habib AG, Kuznik A, Hamza M, Abdullahi MI, Chedi BA, Chippaux J-P, et al. Snakebite is Under Appreciated: Appraisal of Burden from West Africa. PLoS Negl Trop Dis [Internet]. 2015;9(9):1–8. Available from: https://doi.org/10.1371/journal.pntd.0004088Google Scholar 79.↵Andrade-C. MG. ESTADO DEL CONOCIMIENTO DE LA BIODIVERSIDAD EN COLOMBIA Y SUS AMENAZAS. CONSIDERACIONES PARA FORTALECER LA INTERACCIÓN CIENCIA-POLÍTICA. Vol. 35, Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. scieloco ; 2011. p. 491–507.Google Scholar 80.↵Phillips SJ, Dudík M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography (Cop) [Internet]. 2008 Apr 1 [cited 2018 Sep 20];31(2):161–75. Available from: http://doi.wiley.com/10.1111/j.0906-7590.2008.5203.xGoogle Scholar 81.↵Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol Modell [Internet]. 2006;190(3):231–59. Available from: http://www.sciencedirect.com/science/article/pii/S030438000500267XGoogle Scholar 82.Kumar S, Neven LG, Zhu H, Zhang R. Assessing the Global Risk of Establishment of Cydia pomonella (Lepidoptera: Tortricidae) using CLIMEX and MaxEnt Niche Models. J Econ Entomol [Internet]. 2015 Aug [cited 2018 Oct 7];108(4):1708–19. Available from: https://academic.oup.com/jee/article-lookup/doi/10.1093/jee/tov166Google Scholar 83.↵Moreau CSaupe EE, Papes M, Selden PA, Vetter RS. Tracking a Medically Important Spider: Climate Change, Ecological Niche Modeling, and the Brown Recluse (Loxosceles reclusa). Moreau C, editor. PLoS One [Internet]. 2011 Mar 25 [cited 2018 Oct 7];6(3):e17731. Available from: http://dx.plos.org/10.1371/journal.pone.0017731Google Scholar 84.↵Chippaux JP. Snake-bites: appraisal of the global situation. Bull World Health Organ [Internet]. 1998 [cited 2018 Oct 7];76(5):515–24. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9868843Google Scholar 85.França RC de, Germano CE de S, França FGR. Composição de uma taxocenose de serpentes em uma área urbana na Mata Atlântica da Paraíba, Nordeste do Brasil. Biota Neotrop [Internet]. 2012 Sep [cited 2018 Oct 7];12(3):183–95. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1676-06032012000300019&lng=pt&tlng=ptGoogle Scholar 86.↵Johnson SA, Mcgarrity ME. Dealing with Snakes in Florida’s Residential Areas-Identifying Commonly Encountered Snakes 1 [Internet]. 2007 [cited 2018 Oct 7]. Available from: http://edis.ifas.Google Scholar 87.↵de Silva JBabo Martins S, Bolon I, Chappuis F, Ray N, Alcoba G, Ochoa C, et al. Snakebite and its impact in rural communities: The need for a One Health approach. de Silva J, editor. PLoS Negl Trop Dis [Internet]. 2019 Sep 26 [cited 2020 Nov 25];13(9):e0007608. Available from: https://dx.plos.org/10.1371/journal.pntd.0007608Google Scholar 88.↵Birhanu Hurisa AMA, Hurisa B, Niwayesillassie B, Kebede G, Kerga S, Kebede A, et al. Epidemiological Survey of Snake Bite in Ethiopia. Epidemiol Open Access [Internet]. 2014 Sep 26 [cited 2018 Oct 18];04(04):1–5. Available from: https://www.omicsonline.org/open-access/Epidemiological-Survey-of-Snake-Bite-in-Ethiopia-2161-1165.1000174.php?aid=36091Google Scholar 89.↵Tchoffo D, Kamgno J, Kekeunou S, Yadufashije C, Nana Djeunga HC, Nkwescheu AS. High snakebite underreporting rate in the Centre Region of Cameroon: An observational study. BMC Public Health. 2019 Aug 3;19(1):1–7.CrossRefPubMedGoogle Scholar 90.↵Wasko DK, Sasa M. Food resources influence spatial ecology, habitat selection, and foraging behavior in an ambush-hunting snake (Viperidae: Bothrops asper): an experimental study. Zoology [Internet]. 2012 Jun [cited 2018 Oct 18];115(3):179–87. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22440190Google Scholar 91.↵Solórzano A, Cerdas L. Reproductive Biology and Distribution of the Terciopelo, Bothrops asper Garman (Serpentes: Viperidae), in Costa Rica. Herpetologica [Internet]. 1989;45(4):444–50. Available from: http://www.jstor.org/stable/3892835Google Scholar 92.↵Graham CH, Ron SR, Santos JC, Schneider CJ, Moritz C. INTEGRATING PHYLOGENETICS AND ENVIRONMENTAL NICHE MODELS TO EXPLORE SPECIATION MECHANISMS IN DENDROBATID FROGS. Evolution (N Y) [Internet]. 2004 Sep 2 [cited 2018 Oct 18];58(8):1781. Available from: http://www.bioone.org/perlserv/?request=get-abstract&doi=10.1554%2F03-274Google Scholar 93.↵R Development Core Team. R: A Language and Environment for Statistical Computing [Internet]. Vienna, Austria; 2008. Available from: http://www.r-project.orgGoogle Scholar 94.↵Leroy B, Meynard CN, Bellard C, Courchamp F. virtualspecies, an R package to generate virtual species distributions. Ecography (Cop) [Internet]. 2015 May 13;39(6):599–607. Available from: https://doi.org/10.1111/ecog.01388Google Scholar 95.↵Bosso LDe Marco P, Nóbrega CC. Evaluating collinearity effects on species distribution models: An approach based on virtual species simulation. Bosso L, editor. PLoS One [Internet]. 2018 Sep 11 [cited 2020 Jan 23];13(9):e0202403. Available from: https://dx.plos.org/10.1371/journal.pone.0202403Google Scholar 96.↵Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME. Opening the black box: an open-source release of Maxent. Ecography (Cop) [Internet]. 2017 Jul 1 [cited 2020 Nov 24];40(7):887–93. Available from: http://doi.wiley.com/10.1111/ecog.03049Google Scholar 97.↵Sokal RR, Rohlf FJ. Biometry : the principles and practice of statistics in biological research. W.H. Freeman; 1995. 887 p.Google Scholar 98.↵Gyapong JOMohapatra B, Warrell DA, Suraweera W, Bhatia P, Dhingra N, Jotkar RM, et al. Snakebite Mortality in India: A Nationally Representative Mortality Survey. Gyapong JO, editor. PLoS Negl Trop Dis [Internet]. 2011 Apr 12 [cited 2018 Oct 18];5(4):e1018. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21532748Google Scholar 99.↵Programme WF. Colombia Road Network (main roads) [Internet]. WFP GeoNode. 2021 [cited 2021 Jan 16]. Available from: https://geonode.wfp.org/layers/geonode:col_trs_roads_osm/metadata_detailGoogle Scholar 100.↵Food and Agriculture Organization of the United Nations. Land Cover of Colombia [Internet]. GeoNetwork - The portal to spatial data and information. [cited 2021 Jan 16]. Available from: http://www.fao.org/geonetwork/srv/en/metadata.show?id=37154&currTab=simpleGoogle Scholar 101.↵Instituto Geográfico Agustin Codazzi. Major Rivers, Colombia [Internet]. [Shapefile]. 2011 [cited 2021 Jan 16]. Available from: https://earthworks.stanford.edu/catalog/tufts-colombia-major-rivers-11Google Scholar 102.↵Hijmans RJ. Geographic Data Analysis and Modeling [R package raster version 3.4-5]. R Packag [Internet]. 2020 Nov 14 [cited 2021 Jan 16]; Available from: https://cran.r-project.org/package=rasterGoogle Scholar 103.↵van Etten J. R package gdistance: Distances and routes on geographical grids. J Stat Softw. 2017;76(1).Google Scholar 104.↵Ponisio LC, Valpine P, Michaud N, Turek D. One size does not fit all: Customizing MCMC methods for hierarchical models using NIMBLE. Ecol Evol [Internet]. 2020 Mar 14 [cited 2020 Nov 24];10(5):2385–416. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/ece3.6053Google Scholar 105.↵Radosavljevic A, Anderson RP. Making better Maxent models of species distributions: complexity, overfitting and evaluation. J Biogeogr [Internet]. 2014 Apr 1 [cited 2021 Oct 21];41(4):629–43. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/jbi.12227Google Scholar 106.↵Hijmans RJ, Phillips S, Leathwick J, Elith J. dismo: Species Distribution Modeling [Internet]. 2017. Available from: https://cran.r-project.org/package=dismoGoogle Scholar 107.↵Muscarella R, Galante PJ, Soley-Guardia M, Boria RA, Kass JM, Uriarte M, et al. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol Evol [Internet]. 2014 Nov 1 [cited 2021 Jun 11];5(11):1198–205. Available from: https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/2041-210X.12261Google Scholar Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf application/pdf Colombia Cold Sprimg Harbor Laboratory - CSH BioRxiv; (2021): BioRxiv ;p. 1 - 34.