Crop-photoperiodism model 2.0 for the panicle-initiation date of sorghum and rice that includes daily changes in sunrise and sunset times
Background and Aims Daylength determines flowering dates. However, questions remain regarding flowering dates in the natural environment, such as the synchronous flowering of plants sown simultaneously at highly contrasting latitudes. The daily change in sunrise and sunset times is the cue for th...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | Inglés |
Publicado: |
Cold Sprimg Harbor Laboratory (CSH)
2024
|
Materias: | |
Acceso en línea: | https://www.biorxiv.org/content/10.1101/2020.11.29.402628v1.full http://hdl.handle.net/20.500.12324/40211 https://doi.org/10.1101/2020.11.29.402628 |
id |
RepoAGROSAVIA40211 |
---|---|
record_format |
dspace |
institution |
Corporación Colombiana de Investigación Agropecuaria |
collection |
Repositorio AGROSAVIA |
language |
Inglés |
topic |
Sorghum bicolor (L.) Moench Oryza sativa L. Flowering time Temperature acclimation Cultivo - F01 Sorghum bicolor Oryza sativa Temperatura Aclimatación Transitorios http://aims.fao.org/aos/agrovoc/c_7247 http://aims.fao.org/aos/agrovoc/c_5438 http://aims.fao.org/aos/agrovoc/c_7657 http://aims.fao.org/aos/agrovoc/c_8589 |
spellingShingle |
Sorghum bicolor (L.) Moench Oryza sativa L. Flowering time Temperature acclimation Cultivo - F01 Sorghum bicolor Oryza sativa Temperatura Aclimatación Transitorios http://aims.fao.org/aos/agrovoc/c_7247 http://aims.fao.org/aos/agrovoc/c_5438 http://aims.fao.org/aos/agrovoc/c_7657 http://aims.fao.org/aos/agrovoc/c_8589 Clerget, B. Sidibe, M. Bueno, C.S. Trouche, G. Chantereau, J. Grenier, C. Kawakata, T. Domingo, A.J. Layaoen, H.L. Palacios, N.G. Bernal, J.H. Crop-photoperiodism model 2.0 for the panicle-initiation date of sorghum and rice that includes daily changes in sunrise and sunset times |
description |
Background and Aims
Daylength determines flowering dates. However, questions remain regarding flowering dates
in the natural environment, such as the synchronous flowering of plants sown simultaneously
at highly contrasting latitudes. The daily change in sunrise and sunset times is the cue for the
flowering of trees and for the synchronisation moulting in birds at the equator. Sunrise and
sunset also synchronise the cell circadian clock, which is involved in the regulation of
flowering. The goal of this study was to update the photoperiodism model with knowledge
acquired since its conception.
Methods
A large dataset was gathered, including four 2-year series of monthly sowings of 28 sorghum
varieties in Mali and two 1-year series of monthly sowings of eight rice varieties in the
Philippines to compare with previously published monthly sowings in Japan and Malaysia,
and data from sorghum breeders in France, Nicaragua, and Colombia. An additive linear
model of the duration in days to panicle initiation (PI) using day length and daily changes in
sunrise and sunset times was implemented.
Key Results
Simultaneous with the phyllochron, the duration to PI of field crops acclimated to the mean
temperature at seedling emergence within the usual range of mean cropping temperatures. A
unique additive linear model combining daylength and daily changes in sunrise and sunset
hours was accurately fitted for any type of response in the duration to PI to the sowing date
without any temperature input. Once calibrated on a complete and an incomplete monthly
sowing series at two tropical latitudes, the model accurately predicted the duration to PI of the
concerned varieties from the equatorial to the temperate zone.
Conclusions
The results of the updated photoperiodism model strongly supported the hypothesis that
photoperiodism could be a combined response to day length and daily changes in sunrise and
sunset times. |
format |
article |
author |
Clerget, B. Sidibe, M. Bueno, C.S. Trouche, G. Chantereau, J. Grenier, C. Kawakata, T. Domingo, A.J. Layaoen, H.L. Palacios, N.G. Bernal, J.H. |
author_facet |
Clerget, B. Sidibe, M. Bueno, C.S. Trouche, G. Chantereau, J. Grenier, C. Kawakata, T. Domingo, A.J. Layaoen, H.L. Palacios, N.G. Bernal, J.H. |
author_sort |
Clerget, B. |
title |
Crop-photoperiodism model 2.0 for the panicle-initiation date of sorghum and rice that includes daily changes in sunrise and sunset times |
title_short |
Crop-photoperiodism model 2.0 for the panicle-initiation date of sorghum and rice that includes daily changes in sunrise and sunset times |
title_full |
Crop-photoperiodism model 2.0 for the panicle-initiation date of sorghum and rice that includes daily changes in sunrise and sunset times |
title_fullStr |
Crop-photoperiodism model 2.0 for the panicle-initiation date of sorghum and rice that includes daily changes in sunrise and sunset times |
title_full_unstemmed |
Crop-photoperiodism model 2.0 for the panicle-initiation date of sorghum and rice that includes daily changes in sunrise and sunset times |
title_sort |
crop-photoperiodism model 2.0 for the panicle-initiation date of sorghum and rice that includes daily changes in sunrise and sunset times |
publisher |
Cold Sprimg Harbor Laboratory (CSH) |
publishDate |
2024 |
url |
https://www.biorxiv.org/content/10.1101/2020.11.29.402628v1.full http://hdl.handle.net/20.500.12324/40211 https://doi.org/10.1101/2020.11.29.402628 |
work_keys_str_mv |
AT clergetb cropphotoperiodismmodel20forthepanicleinitiationdateofsorghumandricethatincludesdailychangesinsunriseandsunsettimes AT sidibem cropphotoperiodismmodel20forthepanicleinitiationdateofsorghumandricethatincludesdailychangesinsunriseandsunsettimes AT buenocs cropphotoperiodismmodel20forthepanicleinitiationdateofsorghumandricethatincludesdailychangesinsunriseandsunsettimes AT troucheg cropphotoperiodismmodel20forthepanicleinitiationdateofsorghumandricethatincludesdailychangesinsunriseandsunsettimes AT chantereauj cropphotoperiodismmodel20forthepanicleinitiationdateofsorghumandricethatincludesdailychangesinsunriseandsunsettimes AT grenierc cropphotoperiodismmodel20forthepanicleinitiationdateofsorghumandricethatincludesdailychangesinsunriseandsunsettimes AT kawakatat cropphotoperiodismmodel20forthepanicleinitiationdateofsorghumandricethatincludesdailychangesinsunriseandsunsettimes AT domingoaj cropphotoperiodismmodel20forthepanicleinitiationdateofsorghumandricethatincludesdailychangesinsunriseandsunsettimes AT layaoenhl cropphotoperiodismmodel20forthepanicleinitiationdateofsorghumandricethatincludesdailychangesinsunriseandsunsettimes AT palaciosng cropphotoperiodismmodel20forthepanicleinitiationdateofsorghumandricethatincludesdailychangesinsunriseandsunsettimes AT bernaljh cropphotoperiodismmodel20forthepanicleinitiationdateofsorghumandricethatincludesdailychangesinsunriseandsunsettimes |
_version_ |
1842255831167401984 |
spelling |
RepoAGROSAVIA402112024-10-17T03:01:19Z Crop-photoperiodism model 2.0 for the panicle-initiation date of sorghum and rice that includes daily changes in sunrise and sunset times Crop-photoperiodism model 2.0 for the panicle-initiation date of sorghum and rice that includes daily changes in sunrise and sunset times Clerget, B. Sidibe, M. Bueno, C.S. Trouche, G. Chantereau, J. Grenier, C. Kawakata, T. Domingo, A.J. Layaoen, H.L. Palacios, N.G. Bernal, J.H. Sorghum bicolor (L.) Moench Oryza sativa L. Flowering time Temperature acclimation Cultivo - F01 Sorghum bicolor Oryza sativa Temperatura Aclimatación Transitorios http://aims.fao.org/aos/agrovoc/c_7247 http://aims.fao.org/aos/agrovoc/c_5438 http://aims.fao.org/aos/agrovoc/c_7657 http://aims.fao.org/aos/agrovoc/c_8589 Background and Aims Daylength determines flowering dates. However, questions remain regarding flowering dates in the natural environment, such as the synchronous flowering of plants sown simultaneously at highly contrasting latitudes. The daily change in sunrise and sunset times is the cue for the flowering of trees and for the synchronisation moulting in birds at the equator. Sunrise and sunset also synchronise the cell circadian clock, which is involved in the regulation of flowering. The goal of this study was to update the photoperiodism model with knowledge acquired since its conception. Methods A large dataset was gathered, including four 2-year series of monthly sowings of 28 sorghum varieties in Mali and two 1-year series of monthly sowings of eight rice varieties in the Philippines to compare with previously published monthly sowings in Japan and Malaysia, and data from sorghum breeders in France, Nicaragua, and Colombia. An additive linear model of the duration in days to panicle initiation (PI) using day length and daily changes in sunrise and sunset times was implemented. Key Results Simultaneous with the phyllochron, the duration to PI of field crops acclimated to the mean temperature at seedling emergence within the usual range of mean cropping temperatures. A unique additive linear model combining daylength and daily changes in sunrise and sunset hours was accurately fitted for any type of response in the duration to PI to the sowing date without any temperature input. Once calibrated on a complete and an incomplete monthly sowing series at two tropical latitudes, the model accurately predicted the duration to PI of the concerned varieties from the equatorial to the temperate zone. Conclusions The results of the updated photoperiodism model strongly supported the hypothesis that photoperiodism could be a combined response to day length and daily changes in sunrise and sunset times. Centre de coopération internationale en recherche agronomique pour le développement - CIRAD International Crops Research Institute for the Semi-Arid Tropics - ICRISAT International Rice Research Institute - IRRI Centro Internacional de Agricultura Tropical - CIAT Corporación Colombiana de Investigación Agropecuaria - (AGROSAVIA) Instituto Nacional de Tecnología Agropecuaria - INTA Federation of Cooperatives for Development Nicaragua - FECODESA Arroz-Oryza sativa Sorgo-sorgos - Sorghum bicolor 2024-10-16T13:42:23Z 2024-10-16T13:42:23Z 2020-11 2020 article Artículo científico http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 https://www.biorxiv.org/content/10.1101/2020.11.29.402628v1.full http://hdl.handle.net/20.500.12324/40211 https://doi.org/10.1101/2020.11.29.402628 reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA eng BioRxiv 1 1 1 28 Abdulai AL, Kouressy M, Vaksmann M, Asch F, Giese M, Holger B. 2012. Latitude and Date of Sowing Influences Phenology of Photoperiod-Sensitive Sorghums. Journal of Agronomy and Crop Science 198: 340–348. Ahmad M, Cashmore AR. 1993. HY4 gene of A. Thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366: 162–166. Barak S, Tobin EM, Andronis C, Sugano S, Green RM. 2000. All in good time: the Arabidopsis circadian clock. Trends in Plant Science 5: 517–522. Bezot P. 1963. L’amélioration des sorghos au Tchad. Agronomie Tropicale 18: 985–1007. Birch CJ, Vos J, Kiniry J, Bos HJ, Elings A. 1998. Phyllochron responds to acclimation to temperature and irradiance in maize. Field Crops Research 59: 187–200. Borchert R, Renner SS, Callo Z, et al. 2005. Photoperiodic induction of synchronous flowering near the Equator. Nature 433: 627–629. Bouman BAM, Kropff MJ, Tuong TP, Wopereis MCS, ten Berge HFM, van Laar HH. 2001. ORYZA 2000: modeling lowland rice. Los Baños (Philippines): International Rice Research Institute, and Wageningen: Wageningen University and Research Centre. Carberry PS, Muchow RC, Williams R, Sturtz JD, McCow RL. 1992. A simulation model of kenaf for assisting fibre industry planning in northen Australia. I. General introduction and phenological model. Aust. J. Agric. Res. 43: 1501–1513. Carberry PS, Ranganathan R, Reddy LJ, Chauhan YS, Robertson MJ. 2001. Predicting growth and development of pigeonpea: flowering response to photoperiod. Field Crops Research 69: 151– 162. Clerget B, Dingkuhn M, Chantereau J, Hemberger J, Louarn G, Vaksmann M. 2004. Does panicle initiation in tropical sorghum depend on day-to-day change in photoperiod? Field Crops Research 88: 11-27. Clerget B, Dingkuhn M, Gozé E, Rattunde HFW, Ney B. 2008. Variability of phyllochron, plastochron and rate of increase in height in photoperiod-sensitive sorghum varieties. Annals of Botany 101: 579–594. Clerget B, Rattunde HFW, Weltzien E. 2012. Why tropical sorghum sown in winter months has delayed flowering and modified morphogenesis in spite of prevailing short days. Field Crops Research 125: 139-150. Collinson ST, Ellis RH, Summerfield RJ, Roberts EH. 1992. Durations of the photoperiod-sensitive and photoperiod-insensitive phases of development to flowering in four cultivars of rice (Oryza sativa L.). Annals of Botany 70: 339–346. Curtis DL. 1968. The relationship between the date of heading of Nigerian sorghums and the duration of growing season. J. Appl. Ecol. 5: 215–226. Deu M, Rattunde F, Chantereau J. 2006. A global view of genetic diversity in cultivated sorghums using a core collection. Genome 49: 168–180. Dingkuhn M, Kouressy M, Vaksmann M, Clerget B, Chantereau J. 2008. A model of sorghum photoperiodism using the concept of threshold-lowering during prolonged appetence. European Journal of Agronomy 28: 74–89. Dingkuhn M, Sow A, Manneh B, et al. 2015. Field Crops Research Field phenomics for response of a rice diversity panel to ten environments in Senegal and Madagascar. 1. Plant phenological traits. Field Crops Research 183: 342–355. Dingkuhn M, Sow A, Samb A, Diack S, Asch F. 1995. Climatic determinants of irrigated rice performance in the Sahel. 1. Photothermal and micro-climatic responses of flowering. Agricultural Systems 48: 385–410. Dore J. 1959. Response of rice to small differences in length of day. Nature 183: 413–414. Ellis RH, Collinson ST, Hudson D, Patefield WM. 1992. The analysis of reciprocal transfer experiments to estimate the durations of the photoperiod-sensitive and photoperiod-insensitive phases of plant development: An Example in soya bean. Annals of Botany 70: 87–92. Folliard A, Traore PCS, Vaksmann M, Kouressy M. 2004. Modeling of sorghum response to photoperiod: a threshold–hyperbolic approach. Field Crops Research 89: 59–70. Goymann W, Helm B, Jensen W, et al. 2012. A tropical bird can use the equatorial change in sunrise and sunset times to synchronize its circannual clock. Proc. R. Soc. B 279: 3527–3534. Grenier C, Hamon P, Bramel-Cox PJ. 2001. Core collection of sorghum: I. Stratification based on eco-geographical data. Crop Sci. 41: 234–240. Gwinner E, Scheuerlein A. 1998. Seasonal changes in day-light intensity as a potential zeitgeber of circannual rhythms in equatorial Stonechats. J. Ornithol. 139: 407–412. Gwinner E, Scheuerlein A. 1999. Photoperiodic responsiveness of equatorial and temperate-zone stonechats. The Condor 10: 347–359. Hemberger J. 2001. Effets de la photopériode sur le plastochrone, le phyllochrone et la date d’initiation paniculaire de trois variétés de sorgho de race caudatum et guinea. MSc Thesis. Université de Corse, France. Kawakata T, Yajima M. 1995. Modeling flowering time of rice plants under natural photoperiod and constant air-temperature. Agronomy Journal 87: 393–396. Kinmonth-Schultz H, MacEwen M, Seaton D, Millar A, Imaizumi T, Kim S-H. 2018. Mechanistic model of temperature influence on flowering through whole-plant accumulation of FT. bioRxiv: 267104. Kirby EJM, Appleyard M, Fellowes G. 1985. Leaf emergence and tillering in barley and wheat. Agronomie 5: 193–200. Klebs G. 1913. Über das Verhältnis der Aussenwelt zur Entwickling der Pflanse. Sber. Akad. Wiss. Heidelberg 5: 1–47. Lafarge T. 1998. Analyse de la mise en place de la surface foliaire du sorgho-grain (Sorghum bicolor L. Moench) au champ. PhD Thesis. Université d’Orsay-Paris11, France. Laureanno T. 1992. Sunrise/Sunset Algorithms for Home Automation. http://www.laureanno.com/x10-sun.html Major DJ. 1980. Photoperiod response characteristics controlling flowering of nine crop species. Can. J. Plant Sci. 60: 777–784. Miller FR, Barnes DK, Cruzado HJ. 1968. Effect of tropical photoperiods on the growth of sorghum when grown in 12 monthly plantings. Crop Science 8: 499–502. Ramírez F, Davenport TL, Fischer G. 2010. The number of leaves required for floral induction and translocation of the florigenic promoter in mango (Mangifera indica L.) in a tropical climate. Scientia Horticulturae 123: 443–453. Roberts EH, Carpenter AJ. 1965. The interaction of photoperiod and temperature on the flowering response of rice. Annals of Botany 29: 359–364. SAS. 2012. SAS Online® 9.4. SAS Institute Inc., Cary, NC, USA. Shim JS, Jang G. 2020. Environmental signal-dependent regulation of flowering time in rice. International Journal of Molecular Sciences 21: 1–15. Sié M, Dingkuhn M, Wopereis MCS, Miezan KM. 1998. Rice crop duration and leaf appearance rate in a variable thermal environment. I. Development of an empirically based model. Field Crops Research 57: 1–13. Summerfield RJ, Collinson ST, Ellis RH, Roberts EH, De Vries FWTP. 1992. Photothermal responses of flowering in rice (Oryza sativa). Annals of Botany 69: 101–112. Summerfield RJ, Ellis RH, Craufurd PQ, Aiming Q, Robert EH, Wheeler TR. 1997. Environmental and genetic regulation of flowering of tropical annual crops. Euphytica 96: 83–91. Thomas B, Vince-Prue D. 1997. Photoperiodism in plants. New York: Academic Press. Tournois J. 1912. Influence de la lumière sur la floraison du houblon japonais et du chanvre déterminée par des semis hâtifs. C.R. Hebd. Scéanc. Acad. Sci. Paris 155: 297–300. Vergara BS, Chang TT. 1985. The flowering response of the rice plant to photoperiod: A review of the literature, 4th edition. Los Baños (Philippines): International Rice Research Institute. Wallace DH, Gniffke PA, Massaya PN, Zobel RW. 1991. Photoperiod, temperature, and genotype interaction effects on days and nodes required for flowering of bean. J. Amer. Soc. Hort. Sci. 116: 534–543. Yoshida S. 1981. Fundamentals of rice crop science. Los Baños (Philippines): International Rice Research Institute. Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf application/pdf Colombia Cold Sprimg Harbor Laboratory (CSH) BioRxiv; (2020): BioRxiv (Nove.);p. 1 - 28. |