Comparative transcriptomic analysis reveals key components controlling spathe color in Anthurium andraeanum (Hort.)
Anthurium andraeanum (Hort.) is an important ornamental in the tropical cut-flower industry. However, there is currently not enough information to establish a clear connection between the genetic model(s) proposed and the putative genes involved in the differentiation between colors. In this study,...
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | Inglés |
Publicado: |
Cold Sprimg Harbor Laboratory (CSH)
2024
|
Materias: | |
Acceso en línea: | https://www.biorxiv.org/content/10.1101/2020.12.29.424726v1 http://hdl.handle.net/20.500.12324/40193 https://doi.org/10.1101/2020.12.29.424726 |
id |
RepoAGROSAVIA40193 |
---|---|
record_format |
dspace |
institution |
Corporación Colombiana de Investigación Agropecuaria |
collection |
Repositorio AGROSAVIA |
language |
Inglés |
topic |
Flor cortada Industria Genética Genética Transversal http://aims.fao.org/aos/agrovoc/c_16485 http://aims.fao.org/aos/agrovoc/c_3848 http://aims.fao.org/aos/agrovoc/c_3222 |
spellingShingle |
Flor cortada Industria Genética Genética Transversal http://aims.fao.org/aos/agrovoc/c_16485 http://aims.fao.org/aos/agrovoc/c_3848 http://aims.fao.org/aos/agrovoc/c_3222 Osorio Guarín, Jaime A. Gopaulchan, David Quackenbush, Corey Lennon, Adrian M. Umaharan, Pathmanathan Cornejo, Omar E. Comparative transcriptomic analysis reveals key components controlling spathe color in Anthurium andraeanum (Hort.) |
description |
Anthurium andraeanum (Hort.) is an important ornamental in the tropical cut-flower industry. However, there is currently not enough information to establish a clear connection between the genetic model(s) proposed and the putative genes involved in the differentiation between colors. In this study, 18 cDNA libraries related to the spathe color and developmental stages of A. andraeanum cut-flowers were characterized by transcriptome sequencing technology. For the de novo transcriptome, a total of 114,334,082 primary sequence reads were obtained from the Illumina sequencer and were assembled into 151,652 unigenes. Approximately 58,476 transcripts were generated and used for comparative transcriptome analysis between three varieties that differ in spathe color (‘Sasha’ (white), ‘Honduras’ (red), and ‘Rapido’ (purple)). A large number of differentially expressed genes (8,324) that were potentially involved in multiple biological and metabolic pathways were identified, including the flavonoid and anthocyanin biosynthetic pathways. Our results showed that chalcone synthase (CHS) and flavonoid 3’-hydroxylase (F3’H) were the main genes differentially expressed in the white/red/purple comparison. We also identified a differentially expressed cytochrome P450 in the late developmental stage of the purple spathe that appeared to determine the difference between the red- and purple-colored spathes. Additionally, putative MYB-domain protein candidates that could be responsible for the control of the biosynthetic pathway were identified. The results provided basic sequence information for future research on spathe color, which have important implications for breeding strategies in this ornamental. |
format |
article |
author |
Osorio Guarín, Jaime A. Gopaulchan, David Quackenbush, Corey Lennon, Adrian M. Umaharan, Pathmanathan Cornejo, Omar E. |
author_facet |
Osorio Guarín, Jaime A. Gopaulchan, David Quackenbush, Corey Lennon, Adrian M. Umaharan, Pathmanathan Cornejo, Omar E. |
author_sort |
Osorio Guarín, Jaime A. |
title |
Comparative transcriptomic analysis reveals key components controlling spathe color in Anthurium andraeanum (Hort.) |
title_short |
Comparative transcriptomic analysis reveals key components controlling spathe color in Anthurium andraeanum (Hort.) |
title_full |
Comparative transcriptomic analysis reveals key components controlling spathe color in Anthurium andraeanum (Hort.) |
title_fullStr |
Comparative transcriptomic analysis reveals key components controlling spathe color in Anthurium andraeanum (Hort.) |
title_full_unstemmed |
Comparative transcriptomic analysis reveals key components controlling spathe color in Anthurium andraeanum (Hort.) |
title_sort |
comparative transcriptomic analysis reveals key components controlling spathe color in anthurium andraeanum (hort.) |
publisher |
Cold Sprimg Harbor Laboratory (CSH) |
publishDate |
2024 |
url |
https://www.biorxiv.org/content/10.1101/2020.12.29.424726v1 http://hdl.handle.net/20.500.12324/40193 https://doi.org/10.1101/2020.12.29.424726 |
work_keys_str_mv |
AT osorioguarinjaimea comparativetranscriptomicanalysisrevealskeycomponentscontrollingspathecolorinanthuriumandraeanumhort AT gopaulchandavid comparativetranscriptomicanalysisrevealskeycomponentscontrollingspathecolorinanthuriumandraeanumhort AT quackenbushcorey comparativetranscriptomicanalysisrevealskeycomponentscontrollingspathecolorinanthuriumandraeanumhort AT lennonadrianm comparativetranscriptomicanalysisrevealskeycomponentscontrollingspathecolorinanthuriumandraeanumhort AT umaharanpathmanathan comparativetranscriptomicanalysisrevealskeycomponentscontrollingspathecolorinanthuriumandraeanumhort AT cornejoomare comparativetranscriptomicanalysisrevealskeycomponentscontrollingspathecolorinanthuriumandraeanumhort |
_version_ |
1842256100561256448 |
spelling |
RepoAGROSAVIA401932024-10-04T03:02:46Z Comparative transcriptomic analysis reveals key components controlling spathe color in Anthurium andraeanum (Hort.) Comparative transcriptomic analysis reveals key components controlling spathe color in Anthurium andraeanum (Hort.) Osorio Guarín, Jaime A. Gopaulchan, David Quackenbush, Corey Lennon, Adrian M. Umaharan, Pathmanathan Cornejo, Omar E. Flor cortada Industria Genética Genética Transversal http://aims.fao.org/aos/agrovoc/c_16485 http://aims.fao.org/aos/agrovoc/c_3848 http://aims.fao.org/aos/agrovoc/c_3222 Anthurium andraeanum (Hort.) is an important ornamental in the tropical cut-flower industry. However, there is currently not enough information to establish a clear connection between the genetic model(s) proposed and the putative genes involved in the differentiation between colors. In this study, 18 cDNA libraries related to the spathe color and developmental stages of A. andraeanum cut-flowers were characterized by transcriptome sequencing technology. For the de novo transcriptome, a total of 114,334,082 primary sequence reads were obtained from the Illumina sequencer and were assembled into 151,652 unigenes. Approximately 58,476 transcripts were generated and used for comparative transcriptome analysis between three varieties that differ in spathe color (‘Sasha’ (white), ‘Honduras’ (red), and ‘Rapido’ (purple)). A large number of differentially expressed genes (8,324) that were potentially involved in multiple biological and metabolic pathways were identified, including the flavonoid and anthocyanin biosynthetic pathways. Our results showed that chalcone synthase (CHS) and flavonoid 3’-hydroxylase (F3’H) were the main genes differentially expressed in the white/red/purple comparison. We also identified a differentially expressed cytochrome P450 in the late developmental stage of the purple spathe that appeared to determine the difference between the red- and purple-colored spathes. Additionally, putative MYB-domain protein candidates that could be responsible for the control of the biosynthetic pathway were identified. The results provided basic sequence information for future research on spathe color, which have important implications for breeding strategies in this ornamental. 2024-10-03T16:13:47Z 2024-10-03T16:13:47Z 2020-12-30 2020 article Artículo científico http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 https://www.biorxiv.org/content/10.1101/2020.12.29.424726v1 http://hdl.handle.net/20.500.12324/40193 https://doi.org/10.1101/2020.12.29.424726 reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA eng BioRxiv 1 30 Andrews, S., F. Krueger, A. Segonds-Pichon, L. Biggins, C. Krueger, and S. Wingett. 2012. 455 FastQC: A Quality Control Tool for High Throughput Sequence Data. 456 http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/. (accessed August 25, 2019). Benjamini, Y., and Y. Hochberg. 1995. Controlling the false discovery rate: A practical and 458 powerful approach to multiple testing.. J. R. Stat. Soc. 57:289–300 Cao, H., J. Wang, X. Dong, Y. Han, Q. Ma, Y. Ding, F. Zhao, J. Zhang, H. Chen, Q. Xu, J. Xu, 460 and X. Deng. 2015. Carotenoid accumulation affects redox status, starch metabolism, and 461 flavonoid/anthocyanin accumulation in citrus. BMC Plant Biol. 15:1–16. 462 doi:10.1186/s12870-015-0426-4 Collette, V.E., P.E. Jameson, K.E. Schwinn, P. Umaharan, and K.M. Davies. 2004. Temporal 464 and spatial expression of flavonoid biosynthetic genes in flowers of Anthurium 465 andraeanum. Physiol. Plant. 122:297–304. doi:10.1111/j.1399-3054.2004.00402.x Deng, X., H. Bashandy, M. Ainasoja, J. Kontturi, M. Pietiäinen, R.A.E. Laitinen, V.A. Albert, 467 J.P.T. Valkonen, P. Elomaa, and T.H. Teeri. 2014. Functional diversification of duplicated 468 chalcone synthase genes in anthocyanin biosynthesis of Gerbera hybrida. New Phytol. 469 201:1469–1483. doi:https://doi.org/10.1111/nph.12610 Dufour, L., and V. Guérin. 2003. Growth, developmental features and flower production of 471 Anthurium andreanum Lind. in tropical conditions. Sci. Hortic. (Amsterdam). 98:25–35. 472 doi:10.1016/S0304-4238(02)00196-6 Elibox, W., and P. Umaharan. 2008. Inheritance of major spathe colors in Anthurium 474 andraeanum Hort. is determined by three major genes. HortScience 43:787–791. 475 doi:10.21273/hortsci.43.3.787 Gao, L., H. Yang, H. Liu, J. Yang, and Y. Hu. 2016. Extensive transcriptome changes underlying 477 the flower color intensity variation in Paeonia ostii. Front. Plant Sci. 6:1–16. 478 doi:10.3389/fpls.2015.01205 Garzón-Martínez, G.A., Z.I. Zhu, D. Landsman, L.S. Barrero, and L. Mariño-Ramírez. 2012. 480 The Physalis peruviana leaf transcriptome: assembly, annotation and gene model prediction. 481 BMC Genomics 13:151. doi:10.1186/1471-2164-13-151 Gopaulchan, D., A.M. Lennon, and P. Umaharan. 2015. Expression analysis of the anthocyanin 483 genes in pink spathes of anthurium with different color intensities. J. Am. Soc. Hortic. Sci. 484 140:480–489. doi:10.21273/jashs.140.5.480 Gopaulchan, D., P. Umaharan, and A.M. Lennon. 2014. A molecular assessment of the genetic 486 model of spathe color inheritance in Anthurium andraeanum (Hort.). Planta 239:695–705. 487 doi:10.1007/s00425-013-2007-9 Grabherr, M.G., B.J. Haas, M. Yassour, J.Z. Levin, D.A. Thompson, I. Amit, X. Adiconis, L. 489 Fan, R. Raychowdhury, Q. Zeng, Z. Chen, E. Mauceli, N. Hacohen, A. Gnirke, N. Rhind, F. 490 di Palma, B.W. Birren, C. Nusbaum, K. Lindblad-Toh, N. Friedman, and A. Regev. 2011. 491 Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. 492 Biotechnol. 29:644–652. doi:10.1038/nbt.1883 Haas, B.J., A. Papanicolaou, M. Yassour, M. Grabherr, P.D. Blood, J. Bowden, M.B. Couger, D. 494 Eccles, B. Li, M. Lieber, M.D. Macmanes, M. Ott, J. Orvis, N. Pochet, F. Strozzi, N. 495 Weeks, R. Westerman, T. William, C.N. Dewey, R. Henschel, R.D. Leduc, N. Friedman, 496 and A. Regev. 2013. De novo transcript sequence reconstruction from RNA-seq using the 497 Trinity platform for reference generation and analysis. Nat. Protoc. 8:1494–1512. 498 doi:10.1038/nprot.2013.084 Hirota, S.K., K. Nitta, Y. Suyama, N. Kawakubo, A.A. Yasumoto, and T. Yahara. 2013. 500 Pollinator-mediated selection on flower color, flower scent and flower morphology of 501 Hemerocallis: Evidence from genotyping individual pollen grains on the stigma. PLoS One 502 8:1–11. doi:10.1371/journal.pone.0085601 Holton, T.A., and E.C. Cornish. 1995. Genetics and biochemistry of anthocyanin biosynthesis. 504 Plant Cell 7:1071–1083. doi:10.1105/tpc.7.7.1071 Hopkins, R., and M.D. Rausher. 2012. Pollinator-mediated selection on flower color allele drives 506 reinforcement. Science. 335:1090–1092. doi:10.1126/science.1215198 Iwata, R., C. Tang, and H. Kamemoto. 1979. Anthocyanins of Anthurium andreanum Lind. J Am 508 Soc Hortic Sci 104:464–466 Iwata, R.Y., C.S. Tang, and H. Kamemoto. 1985. Concentration of anthocyanins affecting spathe 510 color in anthuriums. J. Am. Soc. Hortic. Sci. 110:383–385 Jones, K.N., and J.S. Reithel. 2001. Pollinator-mediated selection on a flower color 512 polymorphism in experimental populations of Antirrhinum (scrophulariaceae). Am. J. Bot. 513 88:447–454. doi:10.2307/2657109 Kamemoto, H., R.Y. Iwata, and M. Marutani. 1988. Genetics of the major spathe colors in 515 anthuriums. Res. Ser. - Hawaii Agric. Exp. Station. Hitahr Coll. Trop. Agric. Hum. Resour. Kamemoto, H., and A.R. Kuehnle. 1996. Breeding Anthuriums in Hawaii. University of Hawaii 517 Press. Khoo, H.E., A. Azlan, S.T. Tang, and S.M. Lim. 2017. Anthocyanidins and anthocyanins: 519 colored pigments as food, pharmaceutical ingredients, and the potential health benefits. 520 Food Nutr. Res. 61:1361779. doi:10.1080/16546628.2017.1361779 Krueger, F. 2018. Trim Galore. http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/. 522 (accessed July 9, 2019). Langfelder, P., and S. Horvath. 2008. WGCNA: an R package for weighted correlation network 524 analysis. BMC Bioinformatics 9:559. doi:10.1186/1471-2105-9-559 Langmead, B., and S.L. Salzberg. 2012. Fast gapped-read alignment with Bowtie 2. Nat. 526 Methods 9:357–359. doi:10.1038/nmeth.1923 Langmead, B., C. Trapnell, M. Pop, and S.L. Salzberg. 2009. Ultrafast and memory-efficient 528 alignment of short DNA sequences to the human genome. Genome Biol. 10:R25. 529 doi:10.1186/gb-2009-10-3-r25 Li, C., J. Qiu, S. Huang, J. Yin, and G. Yang. 2019. AaMYB3 interacts with AabHLH1 to 531 regulate proanthocyanidin accumulation in Anthurium andraeanum (Hort.)—another 532 strategy to modulate pigmentation. Hortic. Res. 6:1–16. doi:10.1038/s41438-018-0102-6 Li, C., J. Qiu, G. Yang, S. Huang, and J. Yin. 2016. Isolation and characterization of a R2R3-534 MYB transcription factor gene related to anthocyanin biosynthesis in the spathes of 535 Anthurium andraeanum (Hort.). Plant Cell Rep. 35:2151–2165. doi:10.1007/s00299-016-536 2025-8 Li, D., P. Wang, Y. Luo, M. Zhao, and F. Chen. 2017. Health benefits of anthocyanins and 538 molecular mechanisms: Update from recent decade. Crit. Rev. Food Sci. Nutr. 57:1729–539 1741. doi:10.1080/10408398.2015.1030064 Li, Z., J. Wang, X. Zhang, and L. Xu. 2015. Comparative transcriptome analysis of anthurium 541 “Albama” and its anthocyanin-loss mutant. PLoS One 10:1–20. 542 doi:10.1371/journal.pone.0119027 Lin-wang, K., K. Bolitho, K. Grafton, A. Kortstee, S. Karunairetnam, T.K. Mcghie, R. V Espley, 544 R.P. Hellens, and A.C. Allan. 2010. An R2R3 MYB transcription factor associated with 545 regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biol. 10:1–17 Liu, Y., B. Zhou, Y. Qi, X. Chen, C. Liu, Z. Liu, and X. Ren. 2017. Expression Differences of 547 Pigment Structural Genes and Transcription Factors Explain Flesh Coloration in Three 548 Contrasting Kiwifruit Cultivars. Front. Plant Sci. 8:1507. doi:10.3389/fpls.2017.01507 Lou, Q., Y. Liu, Y. Qi, S. Jiao, F. Tian, L. Jiang, and Y. Wang. 2014. Transcriptome sequencing 550 and metabolite analysis reveals the role of delphinidin metabolism in flower colour in grape 551 hyacinth. J. Exp. Bot. 65:3157–3164. doi:10.1093/jxb/eru168 Martin, M. 2011. CUTADAPT removes adapter sequences from high-throughput sequencing 553 reads. EMBnet.journal 17. doi:10.14806/ej.17.1.200 McCarthy, D.J., Y. Chen, and G.K. Smyth. 2012. Differential expression analysis of multifactor 555 RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 40:4288–556 4297. doi:10.1093/nar/gks042 Mori, M., T. Kondo, and K. Yoshida. 2009. Anthocyanin components and mechanism for color 558 development in blue veronica flowers. Biosci. Biotechnol. Biochem. 73:2329–2331. 559 doi:10.1271/bbb.90349 Motamayor, J.C., K. Mockaitis, J. Schmutz, N. Haiminen, D. Livingstone, O. Cornejo, S.D. 561 Findley, P. Zheng, F. Utro, S. Royaert, C. Saski, J. Jenkins, R. Podicheti, M. Zhao, B.E. 562 Scheffler, J.C. Stack, F.A. Feltus, G.M. Mustiga, F. Amores, W. Phillips, J.P. Marelli, G.D. 563 May, H. Shapiro, J. Ma, C.D. Bustamante, R.J. Schnell, D. Main, D. Gilbert, L. Parida, and D.N. Kuhn. 2013. The genome sequence of the most widely cultivated cacao type and its 565 use to identify candidate genes regulating pod color. Genome Biol. 14:r53. doi:10.1186/gb-566 2013-14-6-r53 Ohmiya, A. 2018. Molecular mechanisms underlying the diverse array of petal colors in 568 chrysanthemum flowers. Breed. Sci. 68:119–127. doi:10.1270/jsbbs.17075 Ortiz-Barrientos, D. 2013. The color genes of speciation in plants. Genetics 194:39–42. 570 doi:10.1534/genetics.113.150466 Paradis, E., J. Claude, and K. Strimmer. 2004. APE: Analyses of Phylogenetics and Evolution in 572 R language. Bioinformatics 20:289–290. doi:10.1093/bioinformatics/btg412 Pertea, G., X. Huang, F. Liang, V. Antonescu, R. Sultana, S. Karamycheva, Y. Lee, J. White, F. 574 Cheung, B. Parvizi, J. Tsai, and J. Quackenbush. 2003. TIGR Gene Indices clustering tools 575 (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 576 19:651–652. doi:10.1093/bioinformatics/btg034 Pojer, E., F. Mattivi, D. Johnson, and C.S. Stockley. 2013. The Case for Anthocyanin 578 Consumption to Promote Human Health: A Review. Compr. Rev. Food Sci. Food Saf. 579 12:483–508. doi:10.1111/1541-4337.12024 Qian, M., B. Yu, X. Li, Y. Sun, D. Zhang, and Y. Teng. 2014. Isolation and Expression Analysis 581 of Anthocyanin Biosynthesis Genes from the Red Chinese Sand Pear, Pyrus pyrifolia Nakai 582 cv. Mantianhong, in Response to Methyl Jasmonate Treatment and UV-B/VIS Conditions. 583 Plant Mol. Biol. Report. 32:428–437. doi:10.1007/s11105-013-0652-6 Quattrocchio, F., A. Baudry, L. Lepiniec, and E. Grotewold. 2006. The regulation of flavonoid 585 biosynthesis BT - the science of flavonoids. E. Grotewold, ed. Springer New York, New 586 York, NY. Quattrocchio, F., J. Wing, K. van der Woude, E. Souer, N. de Vetten, J. Mol, and R. Koes. 1999. 588 Molecular analysis of the anthocyanin2 gene of petunia and its role in the evolution of 589 flower color. Plant Cell 11:1433–1444. doi:10.1105/tpc.11.8.1433 Quattrocchio, F., J.F. Wing, H.T.C. Leppen, J.N.M. Mol, and R.E. Koes. 1993. Regulatory genes 591 controlling anthocyanin pigmentation are functionally conserved among plant species and 592 have distinct sets of target genes. Plant Cell 5:1497–1512. doi:10.1105/tpc.5.11.1497 R development core team. 2008. R: A Language and Environment for Statistical Computing. R 594 Foundation for Statistical Computing, Vienna. Ravaglia, D., R. V Espley, R.A. Henry-Kirk, C. Andreotti, V. Ziosi, R.P. Hellens, G. Costa, and 596 A.C. Allan. 2013. Transcriptional regulation of flavonoid biosynthesis in nectarine (Prunus 597 persica) by a set of R2R3 MYB transcription factors. BMC Plant Biol. 13:68. 598 doi:10.1186/1471-2229-13-68 Ritchie, M.E., B. Phipson, D. Wu, Y. Hu, C.W. Law, W. Shi, and G.K. Smyth. 2015. limma 600 powers differential expression analyses for RNA-sequencing and microarray studies. 601 Nucleic Acids Res. 43:e47–e47. doi:10.1093/nar/gkv007 Robinson, M.D., D.J. McCarthy, and G.K. Smyth. 2010. edgeR: a Bioconductor package for 603 differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. 604 doi:10.1093/bioinformatics/btp616 Santos-Buelga, C., N. Mateus, and V. Freitas. 2014. Anthocyanins. Plant Pigments and Beyond. 606 J. Agric. Food Chem. 62. doi:10.1021/jf501950s Singh, R., E.T.L. Low, L.C.L. Ooi, M. Ong-Abdullah, R. Nookiah, N.C. Ting, M. Marjuni, P.L. 608 Chan, M. Ithnin, M.A.A. Manaf, J. Nagappan, K.L. Chan, R. Rosli, M.A. Halim, N. Azizi, 609 M.A. Budiman, N. Lakey, B. Bacher, A. Van Brunt, C. Wang, M. Hogan, D. He, J.D. 610 Macdonald, S.W. Smith, J.M. Ordway, R.A. Martienssen, and R. Sambanthamurthi. 2014. 611 The oil palm VIRESCENS gene controls fruit colour and encodes a R2R3-MYB. Nat. 612 Commun. 5:1–8. doi:10.1038/ncomms5106 Sobral, M., T. Veiga, P. Domínguez, J.A. Guitián, P. Guitián, and J.M. Guitián. 2015. Selective 614 pressures explain differences in flower color among Gentiana lutea populations. PLoS One 615 10:1–15. doi:10.1371/journal.pone.0132522 Spelt, C., F. Quattrocchio, J.N.M. Mol, and R. Koes. 2000. Anthocyanin1 of petunia encodes a 617 basic helix-loop-helix protein that directly activates transcription of structural anthocyanin 618 genes. Plant Cell 12:1619–1631. doi:10.1105/tpc.12.9.1619 Springob, K., J. Nakajima, M. Yamazaki, and K. Saito. 2003. Recent advances in the 620 biosynthesis and accumulation of anthocyanins. Nat. Prod. Rep. 20:288–303. 621 doi:10.1039/B109542K Sun, W., X. Meng, L. Liang, W. Jiang, Y. Huang, J. He, H. Hu, J. Almqvist, X. Gao, and L. 623 Wang. 2015. Molecular and Biochemical Analysis of Chalcone Synthase from Freesia 624 hybrid in Flavonoid Biosynthetic Pathway. PLoS One 10:e0119054 Tan, J., M. Wang, L. Tu, Y. Nie, Y. Lin, and X. Zhang. 2013. The flavonoid pathway regulates 626 the petal colors of cotton flower. PLoS One 8:e72364. doi:10.1371/journal.pone.0072364 Tanaka, Y., N. Sasaki, and A. Ohmiya. 2008. Biosynthesis of plant pigments: Anthocyanins, 628 betalains and carotenoids. Plant J. 54:733–749. doi:10.1111/j.1365-313X.2008.03447.x Thomas, J., H.R. Kim, Y. Rahmatallah, G. Wiggins, Q. Yang, R. Singh, G. Glazko, and A. 630 Mukherjee. 2019. RNA-seq reveals differentially expressed genes in rice (Oryza sativa) 631 roots during interactions with plant-growth promoting bacteria, Azospirillum brasilense. 632 PLoS One 14:e0217309 Tian, D.-Q., X.-Y. Pan, Y.-M. Yu, W.-Y. Wang, F. Zhang, Y.-Y. Ge, X.-L. Shen, F.-Q. Shen, 634 and X.-J. Liu. 2013. De novo characterization of the Anthuriumtranscriptome and analysis 635 of its digital gene expression under cold stress. BMC Genomics 14:827. doi:10.1186/1471-636 2164-14-827 Tian, D.-Q., X.-Y. Pan, Y.-M. Yu, W.-Y. Wang, F. Zhang, Y.-Y. Ge, X.-L. Shen, F.-Q. Shen, 634 and X.-J. Liu. 2013. De novo characterization of the Anthuriumtranscriptome and analysis 635 of its digital gene expression under cold stress. BMC Genomics 14:827. doi:10.1186/1471-636 2164-14-827 Vogel, J.P., Y.Q. Gu, P. Twigg, G.R. Lazo, D. Laudencia-Chingcuanco, D.M. Hayden, T.J. 641 Donze, L.A. Vivian, B. Stamova, and D. Coleman-Derr. 2006. EST sequencing and 642 phylogenetic analysis of the model grass Brachypodium distachyon. Theor. Appl. Genet. 643 113:186–195. doi:10.1007/s00122-006-0285-3 Vogel, J.P., Y.Q. Gu, P. Twigg, G.R. Lazo, D. Laudencia-Chingcuanco, D.M. Hayden, T.J. 641 Donze, L.A. Vivian, B. Stamova, and D. Coleman-Derr. 2006. EST sequencing and 642 phylogenetic analysis of the model grass Brachypodium distachyon. Theor. Appl. Genet. 643 113:186–195. doi:10.1007/s00122-006-0285-3 Walker, A.R., E. Lee, J. Bogs, D.A.J. McDavid, M.R. Thomas, and S.P. Robinson. 2007. White 645 grapes arose through the mutation of two similar and adjacent regulatory genes. Plant J. 49:772–785. doi:10.1111/j.1365-313X.2006.02997.x Wannakrairoj, S., and H. Kamemoto. 1990. Inheritance of purple spathe in Anthurium. J. Am. 648 Soc. Hortic. Sci. jashs 115:169–171 Williams, C.A., J.B. Harborne, and S.J. Mayo. 1981. Anthocyanin pigments and leaf flavonoids 650 in the family araceae. Phytochemistry 20:217–234. doi:https://doi.org/10.1016/0031-651 9422(81)85096-0 Williams, C.A., J.B. Harborne, and S.J. Mayo. 1981. Anthocyanin pigments and leaf flavonoids 650 in the family araceae. Phytochemistry 20:217–234. doi:https://doi.org/10.1016/0031-651 9422(81)85096-0 Zhang, C., X. Yao, H. Ren, K. Wang, and J. Chang. 2019. Isolation and characterization of three 657 Chalcone synthase genes in pecan (Carya illinoinensis). Biomolecules 9. 658 doi:10.3390/biom9060236 Zhang, C., X. Yao, H. Ren, K. Wang, and J. Chang. 2019. Isolation and characterization of three 657 Chalcone synthase genes in pecan (Carya illinoinensis). Biomolecules 9. 658 doi:10.3390/biom9060236 Zhang, C., X. Yao, H. Ren, K. Wang, and J. Chang. 2019. Isolation and characterization of three 657 Chalcone synthase genes in pecan (Carya illinoinensis). Biomolecules 9. 658 doi:10.3390/biom9060236 Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf application/pdf C.I Tibaitatá Colombia Cold Sprimg Harbor Laboratory (CSH) BioRxiv; (2020): BioRxiv (Dec.);p. 1 - 30. |