Chrysopidae family and flower strips as habitat management practices for the control of cabbage insect pests

Flowering plant species within a cultivated field are increasingly implemented as an eco-scheme to re-establish functional agrobiodiversity providing shelter, overwintering sites, and alternative prey and food resources to natural enemies (predators and parasitoids). We evaluated the effect of sown...

Descripción completa

Detalles Bibliográficos
Autores principales: Alcala Herrera, Rafael, Cotes, Belen, Porcel Vilchez, Mario
Formato: article
Lenguaje:Inglés
Publicado: Department of Environmental Protection, Estación Experimental del Zaidín - EEZ 2024
Materias:
Col
Acceso en línea:http://hdl.handle.net/20.500.12324/40183
id RepoAGROSAVIA40183
record_format dspace
institution Corporación Colombiana de Investigación Agropecuaria
collection Repositorio AGROSAVIA
language Inglés
topic Plagas de las plantas - H10
Col
Brassica oleracea
Control de plagas
Franja filtrante vegetativa
Hortalizas y plantas aromáticas
http://aims.fao.org/aos/agrovoc/c_4070
http://aims.fao.org/aos/agrovoc/c_1068
http://aims.fao.org/aos/agrovoc/c_5726
http://aims.fao.org/aos/agrovoc/c_a2aa2186
spellingShingle Plagas de las plantas - H10
Col
Brassica oleracea
Control de plagas
Franja filtrante vegetativa
Hortalizas y plantas aromáticas
http://aims.fao.org/aos/agrovoc/c_4070
http://aims.fao.org/aos/agrovoc/c_1068
http://aims.fao.org/aos/agrovoc/c_5726
http://aims.fao.org/aos/agrovoc/c_a2aa2186
Alcala Herrera, Rafael
Cotes, Belen
Porcel Vilchez, Mario
Chrysopidae family and flower strips as habitat management practices for the control of cabbage insect pests
description Flowering plant species within a cultivated field are increasingly implemented as an eco-scheme to re-establish functional agrobiodiversity providing shelter, overwintering sites, and alternative prey and food resources to natural enemies (predators and parasitoids). We evaluated the effect of sown flower strips designed to attract and support natural enemies of Brassica oleracea pests, with a special emphasis on green lacewings (Chyrsopidae). Brassica plant blocks with adjacent flower strips were compared with control plant blocks. Flower strips were comprised by six plant species (Borago officinalis L., Coriandrum sativum L., Fagopyrum esculentum Moench, Foeniculum vulgare Mill., Helianthus annuus L. and Phacelia tanacetifolia Benth.) which provides floral resources with demonstrated positive effects on survival, reproduction, development and recruitment of lacewings. The abundance of the five pest species considered in this study (Mamestra brassicae, Plutella xylostella, Pieris brassicae, P. rapae and Brevicoryne brassicae) was significantly higher in control blocks (9.32 ± 3.11) than in blocks next to the flower strips (4.06 ± 0.89). In the flower strips, parasitoid and predator abundances increased significantly with increasing blooming rates of the selected flowering species. Chrysoperla carnea (Stephens, 1836) sensu Henry and Chrysoperla lucasina (Lacroix, 1912) represented 90.8% of the total green lacewing adults collected from flower strips. In laboratory and field conditions, green lacewings clearly preferred pollen from P. tanacetifolia and C. sativum, being the consumption of pollen grains significantly higher for females compared to male specimens. In conclusion, flower strips may have a positive effect on biological pest control in brassica crops. Indeed, the use of flower strips may be an alternative to pesticide applications, creating a more favourable environment for locally occurring natural enemies that have the potential to control key brassica pests. P. tanacetifolia is pointed out as a particularly suitable plant to increase the presence of C. carnea in agricultural fields. Enhancing natural enemy biodiversity by using flower resources, as observed for green lacewings, can increase the resilience of natural pest control and provide additional ecosystem services such as pollination. As a general recommendation, we encourage researchers, farmers and practitioners to include the establishment of flower strips in their integrated pest management programs as a promising tool to protect functional biodiversity for biocontrol.
format article
author Alcala Herrera, Rafael
Cotes, Belen
Porcel Vilchez, Mario
author_facet Alcala Herrera, Rafael
Cotes, Belen
Porcel Vilchez, Mario
author_sort Alcala Herrera, Rafael
title Chrysopidae family and flower strips as habitat management practices for the control of cabbage insect pests
title_short Chrysopidae family and flower strips as habitat management practices for the control of cabbage insect pests
title_full Chrysopidae family and flower strips as habitat management practices for the control of cabbage insect pests
title_fullStr Chrysopidae family and flower strips as habitat management practices for the control of cabbage insect pests
title_full_unstemmed Chrysopidae family and flower strips as habitat management practices for the control of cabbage insect pests
title_sort chrysopidae family and flower strips as habitat management practices for the control of cabbage insect pests
publisher Department of Environmental Protection, Estación Experimental del Zaidín - EEZ
publishDate 2024
url http://hdl.handle.net/20.500.12324/40183
work_keys_str_mv AT alcalaherrerarafael chrysopidaefamilyandflowerstripsashabitatmanagementpracticesforthecontrolofcabbageinsectpests
AT cotesbelen chrysopidaefamilyandflowerstripsashabitatmanagementpracticesforthecontrolofcabbageinsectpests
AT porcelvilchezmario chrysopidaefamilyandflowerstripsashabitatmanagementpracticesforthecontrolofcabbageinsectpests
_version_ 1842255787429199872
spelling RepoAGROSAVIA401832024-09-25T03:01:04Z Chrysopidae family and flower strips as habitat management practices for the control of cabbage insect pests Chrysopidae family and flower strips as habitat management practices for the control of cabbage insect pests Alcala Herrera, Rafael Cotes, Belen Porcel Vilchez, Mario Plagas de las plantas - H10 Col Brassica oleracea Control de plagas Franja filtrante vegetativa Hortalizas y plantas aromáticas http://aims.fao.org/aos/agrovoc/c_4070 http://aims.fao.org/aos/agrovoc/c_1068 http://aims.fao.org/aos/agrovoc/c_5726 http://aims.fao.org/aos/agrovoc/c_a2aa2186 Flowering plant species within a cultivated field are increasingly implemented as an eco-scheme to re-establish functional agrobiodiversity providing shelter, overwintering sites, and alternative prey and food resources to natural enemies (predators and parasitoids). We evaluated the effect of sown flower strips designed to attract and support natural enemies of Brassica oleracea pests, with a special emphasis on green lacewings (Chyrsopidae). Brassica plant blocks with adjacent flower strips were compared with control plant blocks. Flower strips were comprised by six plant species (Borago officinalis L., Coriandrum sativum L., Fagopyrum esculentum Moench, Foeniculum vulgare Mill., Helianthus annuus L. and Phacelia tanacetifolia Benth.) which provides floral resources with demonstrated positive effects on survival, reproduction, development and recruitment of lacewings. The abundance of the five pest species considered in this study (Mamestra brassicae, Plutella xylostella, Pieris brassicae, P. rapae and Brevicoryne brassicae) was significantly higher in control blocks (9.32 ± 3.11) than in blocks next to the flower strips (4.06 ± 0.89). In the flower strips, parasitoid and predator abundances increased significantly with increasing blooming rates of the selected flowering species. Chrysoperla carnea (Stephens, 1836) sensu Henry and Chrysoperla lucasina (Lacroix, 1912) represented 90.8% of the total green lacewing adults collected from flower strips. In laboratory and field conditions, green lacewings clearly preferred pollen from P. tanacetifolia and C. sativum, being the consumption of pollen grains significantly higher for females compared to male specimens. In conclusion, flower strips may have a positive effect on biological pest control in brassica crops. Indeed, the use of flower strips may be an alternative to pesticide applications, creating a more favourable environment for locally occurring natural enemies that have the potential to control key brassica pests. P. tanacetifolia is pointed out as a particularly suitable plant to increase the presence of C. carnea in agricultural fields. Enhancing natural enemy biodiversity by using flower resources, as observed for green lacewings, can increase the resilience of natural pest control and provide additional ecosystem services such as pollination. As a general recommendation, we encourage researchers, farmers and practitioners to include the establishment of flower strips in their integrated pest management programs as a promising tool to protect functional biodiversity for biocontrol. Lechuga-Lactuca sativa 2024-09-24T21:09:52Z 2024-09-24T21:09:52Z 2020-11-30 2020 article Artículo científico http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.slu.se/globalassets/ew/org/centrb/ekoforsk/resultat-2021/cotes-210915-2020-ta.pdf http://hdl.handle.net/20.500.12324/40183 reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA eng Slutredovisning 1 1 1 26 Alcalá Herrera, R., Campos, M., González-Salvadó, M., Ruano, F., 2019. Abundance and Population Decline Factors of Chrysopid Juveniles in Olive Groves and Adjacent Trees. Insects 10, 134. https://doi.org/10.3390/insects10050134 Alcalá Herrera, R., Fernández Sierra, M.L., Ruano, F., 2020. The suitability of native flowers as pollen sources for Chrysoperla lucasina (Neuroptera: Chrysopidae). PLoS One 15. https://doi.org/10.1371/journal.pone.0239847 Alford, D. V., Nilsson, C., Ulber, B., 2003. Insect pests of oilseed rape crops, in: Alford, D.V. (Ed.), Biocontrol of Oilseed Rape Pests. Blackwell Publishing, Oxford, UK. Andrade, K.A., Aguiar-Menezes, E.L., Goncalves-Esteves, V., Mendonca, C.B.F., Vieira, G.R.M., Melo, S.J., Magalhaes, J.L.A., Melo, G.J.B., 2017. Pollen Ingestion by Chrysoperla externa (Hagen) Adults in a Diversified Organic Agroecosystem. Neotrop. Entomol. https://doi.org/10.1007/s13744-017-0537-8 Aspöck, H., Aspöck, U., Hölzel, H., 1980. Die Neuropteren Europas: eine zusammenfassende Darstellung der Systematik, Ökologie und Chorologie der Neuropteroidea (Megaloptera, Raphidioptera, Planipennia) Europas. Goecke & Evers, Krefeld, AT. Balmer, O., Géneau, C.E., Belz, E., Weishaupt, B., Förderer, G., Moos, S., Ditner, N., Juric, I., Luka, H., 2014. Wildflower companion plants increase pest parasitation and yield in cabbage fields: Experimental demonstration and call for caution. Biol. Control 76, 19–27. https://doi.org/10.1016/j.biocontrol.2014.04.008 Bates, D., Mächler, M., Bolker, B.B.M., Walker, S.C.S., 2014. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 Bates, D., Maechler, M., 2019. Matrix: Sparse and Dense Matrix Classes and Methods. Bertrand, C., Eckerter, P.W., Ammann, L., Entling, M.H., Gobet, E., Herzog, F., Mestre, L., Tinner, W., Albrecht, M., 2019. Seasonal shifts and complementary use of pollen sources by two bees, a lacewing and a ladybeetle species in European agricultural landscapes. J. Appl. Ecol. 56, 2431–2442. https://doi.org/10.1111/1365-2664.13483 Bianchi, F.J.J.A., Schellhorn, N.A., Cunningham, S.A., 2013. Habitat functionality for the ecosystem service of pest control: reproduction and feeding sites of pests and natural enemies. Agric. For. Entomol. 15, 12–23. https://doi.org/10.1111/j.1461-9563.2012.00586.x Bone, N.J., Thomson, L.J., Ridland, P.M., Cole, P., Hoffmann, A.A., 2009. Cover crops in Victorian apple orchards: Effects on production, natural enemies and pests across a season. Crop Prot. 28, 675–683. https://doi.org/10.1016/j.cropro.2009.03.021 Brooks, M.E., Kristensen, K., van Benthem, K.J., Magnusson, A., Berg, C.W., Nielsen, A., Skaug, H.J., Mächler, M., Bolker, B.M., 2017. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400. Buchmann, S.L., O’Rourke, M.K., 1991. Importance of pollen grain volumes for calculating bee diets. Grana 30, 591–595. https://doi.org/10.1080/00173139109427817 Burleigh, J.G., Young, J.H., Morrison, R.D., 1973. Strip-crossings effect on beneficial insects and spiders associated with cotton in Oklahoma. Environ. Entomol. 2, 281–285. Cahenzli, F., Sigsgaard, L., Daniel, C., Herz, A., Jamar, L., Kelderer, M., Jacobsen, S.K., Kruczyńska, D., Matray, S., Porcel, M., Telfser, J., Pfiffner, L., 2019. Perennial flower strips for pest control in organic apple orchards - A pan-European study. Agric. Ecosyst. Environ. 278, 43–53. https://doi.org/10.1016/j.agee.2019.03.011 Canard, M., 2001. Natural food and feeding habits of lacewings, in: Whittington, A.E., McEwen, P.K., New, T.R. (Eds.), Lacewings in the Crop Environment. Cambridge University Press, Cambridge, UK, pp. 116–129. https://doi.org/DOI: 10.1017/CBO9780511666117.007 Canard, M., Thierry, D., 2007. A historical perspective on nomenclature within the genus Chrysoperla Steinmann, 1964 in Europe: the carnea-complex (Neuroptera Chrysopidae). Ann. del Mus. Civ. di Stor. Nat. di Ferrara 8, 173–179. Chapman, J.W., Reynolds, D.R., Brooks, S.J., Smith, A.D., Woiwod, I.P., 2006. Seasonal variation in the migration strategies of the green lacewing Chrysoperla carnea species complex. Ecol. Entomol. 31, 378–388. https://doi.org/10.1111/j.1365-2311.2006.00797.x Conway, G., 2000. The doubly green revolution: Balancing food, proverty and environmental needs in the 21st century, in: Lee, D.R., Barrett, C.B. (Eds.), Tradeoffs or Synergies?. Agricultural Intensification, Economic Development, and the Environment. CABI, Cornell University Press, Ithaca, N.Y., US, p. 538. Duelli, P., 1984. Oviposition, in: Canard, M., Séméria, Y., New, T.R. (Eds.), Biology of Chrysopidae. Dr. W. Junk Publishers, The Hague, NL, pp. 129–133. European Commission, 2016. EIP-AGRI Focus Group IPM for Brassica. Final report. European Union, 2009. Directiva (CE) no. 128/2009 del parlamento europeo y del consejo, de 21 de octubre de 2009, por la que se establece el marco de la actuación comunitaria para conseguir un uso sostenible de los plaguicidas. Faegri, K.; Iversen, J., 1989. Textbook of pollen analysis, 4th ed. John Wiley and Sons, Chichester. Fiedler, A.K., Landis, D.A., Wratten, S.D., 2008. Maximizing ecosystem services from conservation biological control: The role of habitat management. Biol. Control 45, 254–271. https://doi.org/10.1016/j.biocontrol.2007.12.009 Fox, J., Weisberg, S., 2019. An R Companion to Applied Regression, Third. ed. Sage, Thousand Oaks, CA, US. Fye, R.E., Carranza, R.L., 1972. Movement of insect predators from grain sorghum to cotton. Environ. Entomol. 1, 790–791. Gonzalez, D., Nave, A., Gonçalves, F., Nunes, F.M., Campos, M., Torres, L., 2016. Higher longevity and fecundity of Chrysoperla carnea, a predator of olive pests, on some native flowering Mediterranean plants. Agron. Sustain. Dev. 36. https://doi.org/10.1007/s13593-016-0369-7 Gurr, G.M., Wratten, S.D., Landis, D.A., You, M., 2017. Habitat Management to Suppress Pest Populations: Progress and Prospects, Annual Review of Entomology. https://doi.org/10.1146/annurev-ento-031616-035050 Haaland, C., Gyllin, M., 2011. Sown wildflower strips–a strategy to enhance biodiversity and amenity in intensively used agricultural areas, in: The Importance of Biological Interactions in the Study of Biodiversity. InTech. Hartig, F., 2018. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R package version 0.2.0. Heimbach, U., Müller, A., 2013. Incidence of pyrethroid-resistant oilseed rape pests in Germany. Pest Manag. Sci. 69, 209–216. https://doi.org/10.1002/ps.3351 Henry, C.S., Brooks, S.J., Duelli, P., Johnson, J.B., 2002. Discovering the true Chrysoperla carnea (Insecta: Neuroptera: Chrysopidae) using song analysis, morphology, and ecology. Ann. Entomol. Soc. Am. 95, 172–191. https://doi.org/10.1603/0013-8746(2002)095[0172:dttcci]2.0.co;2 Henry, C.S., Brooks, S.J., Duelli, P., Johnson, J.B., Wells, M.M., Mochizuki, A., 2013. Obligatory duetting behaviour in the Chrysoperla carnea-group of cryptic species (Neuroptera: Chrysopidae): its role in shaping evolutionary history. Biol. Rev. 88, 787–808. https://doi.org/10.1111/brv.12027 Johnen, A., Williams, I.H., Nilsson, C., Klukowski, Z., Luik, A., Ulber, B., 2010. The proPlant decision support system: Phenological models for the major pests of oilseed rape and their key parasitoids in Europe, Biocontrol-Based Integrated Management of Oilseed Rape Pests. https://doi.org/10.1007/978-90-481-3983-5_15 Jones, G.D., 2014. Pollen analyses for pollination research, acetolysis. J. Poll. Ecol 13, 203–217. Landis, D.A., Wratten, S.D., Gurr, G.M., 2000. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45, 175–201. https://doi.org/10.1146/annurev.ento.45.1.175 Lee, J.C., Heimpel, G.E., 2005. Impact of flowering buckwheat on Lepidopteran cabbage pests and their parasitoids at two spatial scales. Biol. Control 34, 290–301. https://doi.org/10.1016/j.biocontrol.2005.06.002 Lenth, R., 2020. emmeans: Estimated Marginal Means, aka Least-Squares Means. Lenth, R.V., 2016. Least-squares means: The R package lsmeans. J. Stat. Softw. 69. https://doi.org/10.18637/jss.v069.i01 Medeiros, M.A., Ribeiro, P.A., Morais, H.C., Castelo, B.M., Sujii, E.R., Salgado-Laboriau, M.L., 2010. Identification of plant families associated with the predators Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae) and Hippodamia convergens Guerin-Meneville (Coleoptera: Coccinelidae) using pollen grain as a natural marker. Brazilian J. Biol. 70, 293–300. https://doi.org/10.1590/s1519-69842010005000011 Monserrat, V.J., 2016. Los crisópidos de la Península Ibérica y Baleares (Insecta, Neuropterida, Neuroptera: Chrysopidae). Graellsia 72, 1–123. https://doi.org/10.3989/graellsia.2016.v72.143 Nave, A., 2016. Enhancing biological control of the olive moth, Prays oleae (Bernard) (Lepidoptera: Praydidae) in organic olive groves by increasing fuctional biodiversity. Universidade de Trás-os-Montes e Alto Douro, Portugal. Nilsson, U., Porcel, M., Świergiel, W., Wivstad, M., 2016. Habitat manipulation – as a pest management tool in vegetable and fruit cropping systems, with the focus on insects and mites. SLU, EPOK – Centre for Organic Food & Farming, Uppsala, SE. Oksanen, J., Guillaume Blanchet, F., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Henry, M., Stevens, H., Szoecs, E., Wagner, H., 2018. vegan: Community Ecology Package. Pappas, M.L., Broufas, G.D., Koveos, D.S., 2011. Chrysopid predators and their role in biological control. J. Entomol. 8, 301–326. Penvern, S., Fernique, S., Cardona, A., Herz, A., Ahrenfeldt, E., Dufils, A., Jamar, L., Korsgaard, M., Kruczyńska, D., Matray, S., Ozolina-Pole, L., Porcel, M., Ralle, B., Steinemann, B., Swiergiel, W., Tasin, M., Telfser, J., Warlop, F., Sigsgaard, L., 2019. Farmers’ management of functional biodiversity goes beyond pest management in organic European apple orchards. Agric. Ecosyst. Environ. 284. https://doi.org/10.1016/j.agee.2019.05.014 Pfiffner, L., Luka, H., Schlatter, C., Juen, A., Traugott, M., 2009. Impact of wildflower strips on biological control of cabbage lepidopterans. Agric. Ecosyst. Environ. 129, 310–314. https://doi.org/10.1016/j.agee.2008.10.003 Plant, C.W., 2013. A key to the adults of British lacewings and their allies (Neuroptera, Megaloptera, Raphidioptera and Mecoptera). Field Studies Council, Shrewsbury, UK. Porcel, M., Cotes, B., Castro, J., Campos, M., 2017. The effect of resident vegetation cover on abundance and diversity of green lacewings (Neuroptera: Chrysopidae) on olive trees. J. Pest Sci. (2004). 90, 195–196. https://doi.org/10.1007/s10340-016-0748-5 Price, B.W., Henry, C.S., Hall, A.C., Mochizuki, A., Duelli, P., Brooks, S.J., 2015. Singing from the Grave: DNA from a 180 Year Old Type Specimen Confirms the Identity of Chrysoperla carnea (Stephens). PLoS One 10, 11. https://doi.org/10.1371/journal.pone.0121127 Principi, M.M., Canard, M., 1984. Feeding habits, in: Canard, M., Séméria, Y., New, T.R. (Eds.), Biology of Chrysopidae. Dr. W. Junk Publishers, The Hague, NL, pp. 76–92. Punt, W., Clarke, G.C.S., 1980. The Northwest European pollen flora. Elsevier, Amsterdam. R Development Core Team, 2017. R: A Language and Environment for Statistical Computing. Resende, A.L.S., Souza, B., Ferreira, R.B., Aguiar-Menezes, E.L., 2017. Flowers of Apiaceous species as sources of pollen for adults of Chrysoperla externa (Hagen) (Neuroptera). Biol. Control 106, 40–44. https://doi.org/10.1016/j.biocontrol.2016.12.007 Ridgway, R.L., Murphy, W.L., 1984. Biological control in the field, in: Canard, M., Séméria, Y., New, T.R. (Eds.), Biology of Chrysopidae. Dr. W. Junk Publishers, The Hague, NL, pp. 220–227. Robinson, K.A., Jonsson, M., Wratten, S.D., Wade, M.R., Buckley, H.L., 2008. Implications of floral resources for predation by an omnivorous lacewing. Basic Appl. Ecol. 9, 172–181. RStudio Team, 2016. RStudio: Integrated Development Environment for R. SCB, 2018. Skörd av trädgårdsväxter 2017. Statistiska meddelande 2018. Silva, E.B., Franco, J.C., Vasconcelos, T., Branco, M., 2010. Effect of ground cover vegetation on the abundance and diversity of beneficial arthropods in citrus orchards. Bull. Entomol. Res. 100, 489–499. https://doi.org/10.1017/s0007485309990526 Smith, M.W., Arnold, D.C., Eikenbary, R.D., Rice, N.R., Shiferaw, A., Cheary, B.S., Carroll, B.L., 1996. Influence of ground cover on beneficial arthropods in pecan. Biol. Control 6, 164–176. https://doi.org/10.1006/bcon.1996.0021 Steffen, W., Richardson, K., Rockström, J., Cornell, S.E., Fetzer, I., Bennett, E.M., Biggs, R., Carpenter, S.R., De Vries, W., De Wit, C.A., Reyers, B., Sörlin, S., 2015. Planetary boundaries: Guiding human development on a changing planet. Science (80-. ). 347. https://doi.org/10.1126/science.1259855 Stelzl, M., 1992. Comparative studies on mouthparts and feeding habits of adult Raphidioptera and Neuroptera (Insecta: Neuropteroidea), in: Current Research in Neuropterology: Proceedings of the Fourth International Symposium on Neuropterology, Bagneres-de-Luchon, Haute-Garonne, France, 24-27 June 1991. Universite Paul-Sabatier. Stelzl, M., 1991. Untersuchungen zu Nahrungsspektren mitteleuropäischer Neuropteren-Imagines (Neuropteroidea, Insecta) mit einer Diskussion über deren Nützlichkeit als Opponenten von Pflanzenschädlingen. J. Appl. Entomol. 111, 469–477. Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R., Polasky, S., 2002. Agricultural sustainability and intensive production practices. Nature 418, 671–677. https://doi.org/10.1038/nature01014 Tittonell, P., 2014. Ecological intensification of agriculture-sustainable by nature. Curr. Opin. Environ. Sustain. 8, 53–61. https://doi.org/10.1016/j.cosust.2014.08.006 Tscharntke, T., Karp, D.S., Chaplin-Kramer, R., Batáry, P., DeClerck, F., Gratton, C., Hunt, L., Ives, A., Jonsson, M., Larsen, A., Martin, E.A., Martínez-Salinas, A., Meehan, T.D., O’Rourke, M., Poveda, K., Rosenheim, J.A., Rusch, A., Schellhorn, N., Wanger, T.C., Wratten, S., Zhang, W., 2016. When natural habitat fails to enhance biological pest control – Five hypotheses. Biol. Conserv. 204, 449–458. https://doi.org/https://doi.org/10.1016/j.biocon.2016.10.001 Tschumi, M., Albrecht, M., Collatz, J., Dubsky, V., Entling, M.H., Najar-Rodriguez, A.J., Jacot, K., 2016. Tailored flower strips promote natural enemy biodiversity and pest control in potato crops. J. Appl. Ecol. 53, 1169–1176. https://doi.org/10.1111/1365-2664.12653 Valdés, B., Díez, M.J., Fernández, I., 1987. Atlas polínico de Andalucía occidental, 1a. ed. Instituto de Desarrollo Regional, Universidad de Sevilla, Excma. Diputacion de Cádiz, Utrera, Sevilla, ES. Van Rijn, P.C.J., 2012. The suitability of field margin flowers as food source for Chrysoperla lacewings. IOBC/WPRS Bull. 75, 213–216. Van Rijn, P.C.J., Wackers, F.L., 2016. Nectar accessibility determines fitness, flower choice and abundance of hoverflies that provide natural pest control. J. Appl. Ecol. 53, 925–933. https://doi.org/10.1111/1365-2664.12605 Villa, M., Marrao, R., Mexia, A., Bento, A., Pereira, J.A., 2017. Are wild flowers and insect honeydews potential food resources for adults of the olive moth, Prays oleae? J. Pest Sci. (2004). 90, 185–194. https://doi.org/10.1007/s10340-016-0745-8 Villa, M., Santos, S.A.P., Benhadi-Marín, J., Mexia, A., Bento, A., Pereira, J.A., 2016. Life-history parameters of Chrysoperla carnea s.l. fed on spontaneous plant species and insect honeydews: importance for conservation biological control. BioControl 61, 533–543. https://doi.org/10.1007/s10526-016-9735-2 Villa, M., Somavilla, I., Santos, S.A.P., López-Sáez, J.A., Pereira, J.A., 2019. Pollen feeding habits of Chrysoperla carnea s.l. adults in the olive grove agroecosystem. Agric. Ecosyst. Environ. 283, 106573. https://doi.org/https://doi.org/10.1016/j.agee.2019.106573 Villenave, J., Deutsch, B., Lode, T., Rat-Morris, E., 2006. Pollen preference of the Chrysoperla species (Neuroptera: Chrysopidae) occurring in the crop environment in western France. Eur. J. Entomol. 103, 771–777. Villenave, J., Thierry, D., Al Mamun, A., Lode, T., Rat-Morris, E., 2005. The pollens consumed by common green lacewings Chrysoperla spp. (Neuroptera: Chrysopidae) in cabbage crop environment in western France. Eur. J. Entomol. 102, 547–552. Williams, I.H., 2010. The major insect pests of oilseed rape in Europe and their management: An overview, Biocontrol-Based Integrated Management of Oilseed Rape Pests. https://doi.org/10.1007/978-90-481-3983-5_1 Winkler, K., Wäckers, F., Pinto, D.M., 2009. Nectar-providing plants enhance the energetic state of herbivores as well as their parasitoids under field conditions. Ecol. Entomol. 34, 221–227. https://doi.org/10.1111/j.1365-2311.2008.01059.x Wyss, E., 1995. The effects of weed strips on aphids and aphidophagous predators in an apple orchard. Entomol. Exp. Appl. 75, 43–49. Zhao, J.Z., Ayers, G.S., Grafius, E.J., Stehr, F.W., 1992. Effects of neighboring nectar-producing plants on populations of pest Lepidoptera and their parasitoids in broccoli plantings. Gt. Lakes Entomol. 25, 253–258. Alcalá Herrera, R., Campos, M., González-Salvadó, M., Ruano, F., 2019. Abundance and Population Decline Factors of Chrysopid Juveniles in Olive Groves and Adjacent Trees. Insects 10, 134. https://doi.org/10.3390/insects10050134 Alcalá Herrera, R., Fernández Sierra, M.L., Ruano, F., 2020. The suitability of native flowers as pollen sources for Chrysoperla lucasina (Neuroptera: Chrysopidae). PLoS One 15. https://doi.org/10.1371/journal.pone.0239847 Alford, D. V., Nilsson, C., Ulber, B., 2003. Insect pests of oilseed rape crops, in: Alford, D.V. (Ed.), Biocontrol of Oilseed Rape Pests. Blackwell Publishing, Oxford, UK. Andrade, K.A., Aguiar-Menezes, E.L., Goncalves-Esteves, V., Mendonca, C.B.F., Vieira, G.R.M., Melo, S.J., Magalhaes, J.L.A., Melo, G.J.B., 2017. Pollen Ingestion by Chrysoperla externa (Hagen) Adults in a Diversified Organic Agroecosystem. Neotrop. Entomol. https://doi.org/10.1007/s13744-017-0537-8 Aspöck, H., Aspöck, U., Hölzel, H., 1980. Die Neuropteren Europas: eine zusammenfassende Darstellung der Systematik, Ökologie und Chorologie der Neuropteroidea (Megaloptera, Raphidioptera, Planipennia) Europas. Goecke & Evers, Krefeld, AT. Balmer, O., Géneau, C.E., Belz, E., Weishaupt, B., Förderer, G., Moos, S., Ditner, N., Juric, I., Luka, H., 2014. Wildflower companion plants increase pest parasitation and yield in cabbage fields: Experimental demonstration and call for caution. Biol. Control 76, 19–27. https://doi.org/10.1016/j.biocontrol.2014.04.008 Bates, D., Mächler, M., Bolker, B.B.M., Walker, S.C.S., 2014. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 Bates, D., Maechler, M., 2019. Matrix: Sparse and Dense Matrix Classes and Methods. Bertrand, C., Eckerter, P.W., Ammann, L., Entling, M.H., Gobet, E., Herzog, F., Mestre, L., Tinner, W., Albrecht, M., 2019. Seasonal shifts and complementary use of pollen sources by two bees, a lacewing and a ladybeetle species in European agricultural landscapes. J. Appl. Ecol. 56, 2431–2442. https://doi.org/10.1111/1365-2664.13483 Bianchi, F.J.J.A., Schellhorn, N.A., Cunningham, S.A., 2013. Habitat functionality for the ecosystem service of pest control: reproduction and feeding sites of pests and natural enemies. Agric. For. Entomol. 15, 12–23. https://doi.org/10.1111/j.1461-9563.2012.00586.x Bone, N.J., Thomson, L.J., Ridland, P.M., Cole, P., Hoffmann, A.A., 2009. Cover crops in Victorian apple orchards: Effects on production, natural enemies and pests across a season. Crop Prot. 28, 675–683. https://doi.org/10.1016/j.cropro.2009.03.021 Brooks, M.E., Kristensen, K., van Benthem, K.J., Magnusson, A., Berg, C.W., Nielsen, A., Skaug, H.J., Mächler, M., Bolker, B.M., 2017. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400. Buchmann, S.L., O’Rourke, M.K., 1991. Importance of pollen grain volumes for calculating bee diets. Grana 30, 591–595. https://doi.org/10.1080/00173139109427817 Burleigh, J.G., Young, J.H., Morrison, R.D., 1973. Strip-crossings effect on beneficial insects and spiders associated with cotton in Oklahoma. Environ. Entomol. 2, 281–285. Cahenzli, F., Sigsgaard, L., Daniel, C., Herz, A., Jamar, L., Kelderer, M., Jacobsen, S.K., Kruczyńska, D., Matray, S., Porcel, M., Telfser, J., Pfiffner, L., 2019. Perennial flower strips for pest control in organic apple orchards - A pan-European study. Agric. Ecosyst. Environ. 278, 43–53. https://doi.org/10.1016/j.agee.2019.03.011 Canard, M., 2001. Natural food and feeding habits of lacewings, in: Whittington, A.E., McEwen, P.K., New, T.R. (Eds.), Lacewings in the Crop Environment. Cambridge University Press, Cambridge, UK, pp. 116–129. https://doi.org/DOI: 10.1017/CBO9780511666117.007 Canard, M., Thierry, D., 2007. A historical perspective on nomenclature within the genus Chrysoperla Steinmann, 1964 in Europe: the carnea-complex (Neuroptera Chrysopidae). Ann. del Mus. Civ. di Stor. Nat. di Ferrara 8, 173–179. Chapman, J.W., Reynolds, D.R., Brooks, S.J., Smith, A.D., Woiwod, I.P., 2006. Seasonal variation in the migration strategies of the green lacewing Chrysoperla carnea species complex. Ecol. Entomol. 31, 378–388. https://doi.org/10.1111/j.1365-2311.2006.00797.x Conway, G., 2000. The doubly green revolution: Balancing food, proverty and environmental needs in the 21st century, in: Lee, D.R., Barrett, C.B. (Eds.), Tradeoffs or Synergies?. Agricultural Intensification, Economic Development, and the Environment. CABI, Cornell University Press, Ithaca, N.Y., US, p. 538. Duelli, P., 1984. Oviposition, in: Canard, M., Séméria, Y., New, T.R. (Eds.), Biology of Chrysopidae. Dr. W. Junk Publishers, The Hague, NL, pp. 129–133. European Commission, 2016. EIP-AGRI Focus Group IPM for Brassica. Final report. European Union, 2009. Directiva (CE) no. 128/2009 del parlamento europeo y del consejo, de 21 de octubre de 2009, por la que se establece el marco de la actuación comunitaria para conseguir un uso sostenible de los plaguicidas. Faegri, K.; Iversen, J., 1989. Textbook of pollen analysis, 4th ed. John Wiley and Sons, Chichester. Fiedler, A.K., Landis, D.A., Wratten, S.D., 2008. Maximizing ecosystem services from conservation biological control: The role of habitat management. Biol. Control 45, 254–271. https://doi.org/10.1016/j.biocontrol.2007.12.009 Fox, J., Weisberg, S., 2019. An R Companion to Applied Regression, Third. ed. Sage, Thousand Oaks, CA, US. Fye, R.E., Carranza, R.L., 1972. Movement of insect predators from grain sorghum to cotton. Environ. Entomol. 1, 790–791. Gonzalez, D., Nave, A., Gonçalves, F., Nunes, F.M., Campos, M., Torres, L., 2016. Higher longevity and fecundity of Chrysoperla carnea, a predator of olive pests, on some native flowering Mediterranean plants. Agron. Sustain. Dev. 36. https://doi.org/10.1007/s13593-016-0369-7 Gurr, G.M., Wratten, S.D., Landis, D.A., You, M., 2017. Habitat Management to Suppress Pest Populations: Progress and Prospects, Annual Review of Entomology. https://doi.org/10.1146/annurev-ento-031616-035050 Haaland, C., Gyllin, M., 2011. Sown wildflower strips–a strategy to enhance biodiversity and amenity in intensively used agricultural areas, in: The Importance of Biological Interactions in the Study of Biodiversity. InTech. Hartig, F., 2018. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R package version 0.2.0. Heimbach, U., Müller, A., 2013. Incidence of pyrethroid-resistant oilseed rape pests in Germany. Pest Manag. Sci. 69, 209–216. https://doi.org/10.1002/ps.3351 Henry, C.S., Brooks, S.J., Duelli, P., Johnson, J.B., 2002. Discovering the true Chrysoperla carnea (Insecta: Neuroptera: Chrysopidae) using song analysis, morphology, and ecology. Ann. Entomol. Soc. Am. 95, 172–191. https://doi.org/10.1603/0013-8746(2002)095[0172:dttcci]2.0.co;2 Henry, C.S., Brooks, S.J., Duelli, P., Johnson, J.B., Wells, M.M., Mochizuki, A., 2013. Obligatory duetting behaviour in the Chrysoperla carnea-group of cryptic species (Neuroptera: Chrysopidae): its role in shaping evolutionary history. Biol. Rev. 88, 787–808. https://doi.org/10.1111/brv.12027 Johnen, A., Williams, I.H., Nilsson, C., Klukowski, Z., Luik, A., Ulber, B., 2010. The proPlant decision support system: Phenological models for the major pests of oilseed rape and their key parasitoids in Europe, Biocontrol-Based Integrated Management of Oilseed Rape Pests. https://doi.org/10.1007/978-90-481-3983-5_15 Jones, G.D., 2014. Pollen analyses for pollination research, acetolysis. J. Poll. Ecol 13, 203–217. Landis, D.A., Wratten, S.D., Gurr, G.M., 2000. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45, 175–201. https://doi.org/10.1146/annurev.ento.45.1.175 Lee, J.C., Heimpel, G.E., 2005. Impact of flowering buckwheat on Lepidopteran cabbage pests and their parasitoids at two spatial scales. Biol. Control 34, 290–301. https://doi.org/10.1016/j.biocontrol.2005.06.002 Lenth, R., 2020. emmeans: Estimated Marginal Means, aka Least-Squares Means. Lenth, R.V., 2016. Least-squares means: The R package lsmeans. J. Stat. Softw. 69. https://doi.org/10.18637/jss.v069.i01 Medeiros, M.A., Ribeiro, P.A., Morais, H.C., Castelo, B.M., Sujii, E.R., Salgado-Laboriau, M.L., 2010. Identification of plant families associated with the predators Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae) and Hippodamia convergens Guerin-Meneville (Coleoptera: Coccinelidae) using pollen grain as a natural marker. Brazilian J. Biol. 70, 293–300. https://doi.org/10.1590/s1519-69842010005000011 Monserrat, V.J., 2016. Los crisópidos de la Península Ibérica y Baleares (Insecta, Neuropterida, Neuroptera: Chrysopidae). Graellsia 72, 1–123. https://doi.org/10.3989/graellsia.2016.v72.143 Nave, A., 2016. Enhancing biological control of the olive moth, Prays oleae (Bernard) (Lepidoptera: Praydidae) in organic olive groves by increasing fuctional biodiversity. Universidade de Trás-os-Montes e Alto Douro, Portugal. Nilsson, U., Porcel, M., Świergiel, W., Wivstad, M., 2016. Habitat manipulation – as a pest management tool in vegetable and fruit cropping systems, with the focus on insects and mites. SLU, EPOK – Centre for Organic Food & Farming, Uppsala, SE. Oksanen, J., Guillaume Blanchet, F., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Henry, M., Stevens, H., Szoecs, E., Wagner, H., 2018. vegan: Community Ecology Package. Pappas, M.L., Broufas, G.D., Koveos, D.S., 2011. Chrysopid predators and their role in biological control. J. Entomol. 8, 301–326. Penvern, S., Fernique, S., Cardona, A., Herz, A., Ahrenfeldt, E., Dufils, A., Jamar, L., Korsgaard, M., Kruczyńska, D., Matray, S., Ozolina-Pole, L., Porcel, M., Ralle, B., Steinemann, B., Swiergiel, W., Tasin, M., Telfser, J., Warlop, F., Sigsgaard, L., 2019. Farmers’ management of functional biodiversity goes beyond pest management in organic European apple orchards. Agric. Ecosyst. Environ. 284. https://doi.org/10.1016/j.agee.2019.05.014 Pfiffner, L., Luka, H., Schlatter, C., Juen, A., Traugott, M., 2009. Impact of wildflower strips on biological control of cabbage lepidopterans. Agric. Ecosyst. Environ. 129, 310–314. https://doi.org/10.1016/j.agee.2008.10.003 Plant, C.W., 2013. A key to the adults of British lacewings and their allies (Neuroptera, Megaloptera, Raphidioptera and Mecoptera). Field Studies Council, Shrewsbury, UK. Porcel, M., Cotes, B., Castro, J., Campos, M., 2017. The effect of resident vegetation cover on abundance and diversity of green lacewings (Neuroptera: Chrysopidae) on olive trees. J. Pest Sci. (2004). 90, 195–196. https://doi.org/10.1007/s10340-016-0748-5 Price, B.W., Henry, C.S., Hall, A.C., Mochizuki, A., Duelli, P., Brooks, S.J., 2015. Singing from the Grave: DNA from a 180 Year Old Type Specimen Confirms the Identity of Chrysoperla carnea (Stephens). PLoS One 10, 11. https://doi.org/10.1371/journal.pone.0121127 Principi, M.M., Canard, M., 1984. Feeding habits, in: Canard, M., Séméria, Y., New, T.R. (Eds.), Biology of Chrysopidae. Dr. W. Junk Publishers, The Hague, NL, pp. 76–92. Punt, W., Clarke, G.C.S., 1980. The Northwest European pollen flora. Elsevier, Amsterdam. R Development Core Team, 2017. R: A Language and Environment for Statistical Computing. Resende, A.L.S., Souza, B., Ferreira, R.B., Aguiar-Menezes, E.L., 2017. Flowers of Apiaceous species as sources of pollen for adults of Chrysoperla externa (Hagen) (Neuroptera). Biol. Control 106, 40–44. https://doi.org/10.1016/j.biocontrol.2016.12.007 Ridgway, R.L., Murphy, W.L., 1984. Biological control in the field, in: Canard, M., Séméria, Y., New, T.R. (Eds.), Biology of Chrysopidae. Dr. W. Junk Publishers, The Hague, NL, pp. 220–227. Robinson, K.A., Jonsson, M., Wratten, S.D., Wade, M.R., Buckley, H.L., 2008. Implications of floral resources for predation by an omnivorous lacewing. Basic Appl. Ecol. 9, 172–181. RStudio Team, 2016. RStudio: Integrated Development Environment for R. SCB, 2018. Skörd av trädgårdsväxter 2017. Statistiska meddelande 2018. Silva, E.B., Franco, J.C., Vasconcelos, T., Branco, M., 2010. Effect of ground cover vegetation on the abundance and diversity of beneficial arthropods in citrus orchards. Bull. Entomol. Res. 100, 489–499. https://doi.org/10.1017/s0007485309990526 Smith, M.W., Arnold, D.C., Eikenbary, R.D., Rice, N.R., Shiferaw, A., Cheary, B.S., Carroll, B.L., 1996. Influence of ground cover on beneficial arthropods in pecan. Biol. Control 6, 164–176. https://doi.org/10.1006/bcon.1996.0021 Steffen, W., Richardson, K., Rockström, J., Cornell, S.E., Fetzer, I., Bennett, E.M., Biggs, R., Carpenter, S.R., De Vries, W., De Wit, C.A., Reyers, B., Sörlin, S., 2015. Planetary boundaries: Guiding human development on a changing planet. Science (80-. ). 347. https://doi.org/10.1126/science.1259855 Stelzl, M., 1992. Comparative studies on mouthparts and feeding habits of adult Raphidioptera and Neuroptera (Insecta: Neuropteroidea), in: Current Research in Neuropterology: Proceedings of the Fourth International Symposium on Neuropterology, Bagneres-de-Luchon, Haute-Garonne, France, 24-27 June 1991. Universite Paul-Sabatier. Stelzl, M., 1991. Untersuchungen zu Nahrungsspektren mitteleuropäischer Neuropteren-Imagines (Neuropteroidea, Insecta) mit einer Diskussion über deren Nützlichkeit als Opponenten von Pflanzenschädlingen. J. Appl. Entomol. 111, 469–477. Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R., Polasky, S., 2002. Agricultural sustainability and intensive production practices. Nature 418, 671–677. https://doi.org/10.1038/nature01014 Tittonell, P., 2014. Ecological intensification of agriculture-sustainable by nature. Curr. Opin. Environ. Sustain. 8, 53–61. https://doi.org/10.1016/j.cosust.2014.08.006 Tscharntke, T., Karp, D.S., Chaplin-Kramer, R., Batáry, P., DeClerck, F., Gratton, C., Hunt, L., Ives, A., Jonsson, M., Larsen, A., Martin, E.A., Martínez-Salinas, A., Meehan, T.D., O’Rourke, M., Poveda, K., Rosenheim, J.A., Rusch, A., Schellhorn, N., Wanger, T.C., Wratten, S., Zhang, W., 2016. When natural habitat fails to enhance biological pest control – Five hypotheses. Biol. Conserv. 204, 449–458. https://doi.org/https://doi.org/10.1016/j.biocon.2016.10.001 Tschumi, M., Albrecht, M., Collatz, J., Dubsky, V., Entling, M.H., Najar-Rodriguez, A.J., Jacot, K., 2016. Tailored flower strips promote natural enemy biodiversity and pest control in potato crops. J. Appl. Ecol. 53, 1169–1176. https://doi.org/10.1111/1365-2664.12653 Valdés, B., Díez, M.J., Fernández, I., 1987. Atlas polínico de Andalucía occidental, 1a. ed. Instituto de Desarrollo Regional, Universidad de Sevilla, Excma. Diputacion de Cádiz, Utrera, Sevilla, ES. Van Rijn, P.C.J., 2012. The suitability of field margin flowers as food source for Chrysoperla lacewings. IOBC/WPRS Bull. 75, 213–216. Van Rijn, P.C.J., Wackers, F.L., 2016. Nectar accessibility determines fitness, flower choice and abundance of hoverflies that provide natural pest control. J. Appl. Ecol. 53, 925–933. https://doi.org/10.1111/1365-2664.12605 Villa, M., Marrao, R., Mexia, A., Bento, A., Pereira, J.A., 2017. Are wild flowers and insect honeydews potential food resources for adults of the olive moth, Prays oleae? J. Pest Sci. (2004). 90, 185–194. https://doi.org/10.1007/s10340-016-0745-8 Villa, M., Santos, S.A.P., Benhadi-Marín, J., Mexia, A., Bento, A., Pereira, J.A., 2016. Life-history parameters of Chrysoperla carnea s.l. fed on spontaneous plant species and insect honeydews: importance for conservation biological control. BioControl 61, 533–543. https://doi.org/10.1007/s10526-016-9735-2 Villa, M., Somavilla, I., Santos, S.A.P., López-Sáez, J.A., Pereira, J.A., 2019. Pollen feeding habits of Chrysoperla carnea s.l. adults in the olive grove agroecosystem. Agric. Ecosyst. Environ. 283, 106573. https://doi.org/https://doi.org/10.1016/j.agee.2019.106573 Villenave, J., Deutsch, B., Lode, T., Rat-Morris, E., 2006. Pollen preference of the Chrysoperla species (Neuroptera: Chrysopidae) occurring in the crop environment in western France. Eur. J. Entomol. 103, 771–777. Villenave, J., Thierry, D., Al Mamun, A., Lode, T., Rat-Morris, E., 2005. The pollens consumed by common green lacewings Chrysoperla spp. (Neuroptera: Chrysopidae) in cabbage crop environment in western France. Eur. J. Entomol. 102, 547–552. Williams, I.H., 2010. The major insect pests of oilseed rape in Europe and their management: An overview, Biocontrol-Based Integrated Management of Oilseed Rape Pests. https://doi.org/10.1007/978-90-481-3983-5_1 Winkler, K., Wäckers, F., Pinto, D.M., 2009. Nectar-providing plants enhance the energetic state of herbivores as well as their parasitoids under field conditions. Ecol. Entomol. 34, 221–227. https://doi.org/10.1111/j.1365-2311.2008.01059.x Wyss, E., 1995. The effects of weed strips on aphids and aphidophagous predators in an apple orchard. Entomol. Exp. Appl. 75, 43–49. Zhao, J.Z., Ayers, G.S., Grafius, E.J., Stehr, F.W., 1992. Effects of neighboring nectar-producing plants on populations of pest Lepidoptera and their parasitoids in broccoli plantings. Gt. Lakes Entomol. 25, 253–258. Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf application/pdf Colombia Department of Environmental Protection, Estación Experimental del Zaidín - EEZ Slutredovisning; Vol 1,Num 1 (2017) : Slutredovisning; Vol 1,Num 1 (2017) p.1-26.