Lactogénesis

La lactogénesis es la habilidad de producir lactosa y consiste en un periodo de transición caracterizado por la diferenciación funcional de las células del tejido mamario, las cuales cambian de un estado no lactante (no secretorio) a lactante (secretorio) (McManaman & Neville, 2003; Truchet...

Descripción completa

Detalles Bibliográficos
Autores principales: Huertas Molina, Oscar Felipe, Vargas, Karen, Olivera Angel, Martha
Formato: article
Lenguaje:Español
Publicado: Universidad de Antioquia 2024
Materias:
Acceso en línea:https://revistas.udea.edu.co/index.php/biogenesis/article/view/342148
http://hdl.handle.net/20.500.12324/39988
id RepoAGROSAVIA39988
record_format dspace
institution Corporación Colombiana de Investigación Agropecuaria
collection Repositorio AGROSAVIA
language Español
topic Ganadería - L01
Ganado de leche
Producción lechera
Máquinas de ordeño
Lactosa
Ganadería y especies menores
http://aims.fao.org/aos/agrovoc/c_2108
http://aims.fao.org/aos/agrovoc/c_4829
http://aims.fao.org/aos/agrovoc/c_4836
http://aims.fao.org/aos/agrovoc/c_4146
spellingShingle Ganadería - L01
Ganado de leche
Producción lechera
Máquinas de ordeño
Lactosa
Ganadería y especies menores
http://aims.fao.org/aos/agrovoc/c_2108
http://aims.fao.org/aos/agrovoc/c_4829
http://aims.fao.org/aos/agrovoc/c_4836
http://aims.fao.org/aos/agrovoc/c_4146
Huertas Molina, Oscar Felipe
Vargas, Karen
Olivera Angel, Martha
Lactogénesis
description La lactogénesis es la habilidad de producir lactosa y consiste en un periodo de transición caracterizado por la diferenciación funcional de las células del tejido mamario, las cuales cambian de un estado no lactante (no secretorio) a lactante (secretorio) (McManaman & Neville, 2003; Truchet & Honvo-Houéto, 2017). Este proceso se ha dividido en dos fases: 1) fase de activación secretoria o lactogénesis I donde, además de ocurrir diferenciación celular y enzimática (Hurley, 2013; Neville, Neville, Mcfadden & Forsyth, 2002), se da la calostrogénesis (ver capítulo II. Calostrogenesis) y 2) fase de activación secretoria o lactogénesis II, caracterizada por la secreción copiosa de leche (Neville & Morton, 2001; Preusting, Brumley, Odibo, Spatz & Louis, 2017).
format article
author Huertas Molina, Oscar Felipe
Vargas, Karen
Olivera Angel, Martha
author_facet Huertas Molina, Oscar Felipe
Vargas, Karen
Olivera Angel, Martha
author_sort Huertas Molina, Oscar Felipe
title Lactogénesis
title_short Lactogénesis
title_full Lactogénesis
title_fullStr Lactogénesis
title_full_unstemmed Lactogénesis
title_sort lactogénesis
publisher Universidad de Antioquia
publishDate 2024
url https://revistas.udea.edu.co/index.php/biogenesis/article/view/342148
http://hdl.handle.net/20.500.12324/39988
work_keys_str_mv AT huertasmolinaoscarfelipe lactogenesis
AT vargaskaren lactogenesis
AT oliveraangelmartha lactogenesis
_version_ 1842255767010279424
spelling RepoAGROSAVIA399882024-08-30T03:00:53Z Lactogénesis Huertas Molina, Oscar Felipe Vargas, Karen Olivera Angel, Martha Ganadería - L01 Ganado de leche Producción lechera Máquinas de ordeño Lactosa Ganadería y especies menores http://aims.fao.org/aos/agrovoc/c_2108 http://aims.fao.org/aos/agrovoc/c_4829 http://aims.fao.org/aos/agrovoc/c_4836 http://aims.fao.org/aos/agrovoc/c_4146 La lactogénesis es la habilidad de producir lactosa y consiste en un periodo de transición caracterizado por la diferenciación funcional de las células del tejido mamario, las cuales cambian de un estado no lactante (no secretorio) a lactante (secretorio) (McManaman & Neville, 2003; Truchet & Honvo-Houéto, 2017). Este proceso se ha dividido en dos fases: 1) fase de activación secretoria o lactogénesis I donde, además de ocurrir diferenciación celular y enzimática (Hurley, 2013; Neville, Neville, Mcfadden & Forsyth, 2002), se da la calostrogénesis (ver capítulo II. Calostrogenesis) y 2) fase de activación secretoria o lactogénesis II, caracterizada por la secreción copiosa de leche (Neville & Morton, 2001; Preusting, Brumley, Odibo, Spatz & Louis, 2017). Ganado de leche-Ganadería leche 2024-08-29T14:27:53Z 2024-08-29T14:27:53Z 2020-05-22 2020 article Capítulo http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 https://revistas.udea.edu.co/index.php/biogenesis/article/view/342148 http://hdl.handle.net/20.500.12324/39988 reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA spa La lactanciavista desde múltiples enfoques 31 56 Anderson, S. M., Rudolph, M. C., McManaman, J. L., & Neville, M. C. (2007). Key stages in mammary gland development. Secretory activation in the mammary gland: It’s not just about milk protein synthesis! Breast Cancer Research, 9(1), 1–14. https:// doi.org/10.1186/bcr1653 Angulo, J., Mahecha, L., & Olivera, M. (2009). Síntesis, composición y modificación de la grasa de la leche bovina: Un nutriente valioso para la salud humana. Revista MVZ Cordoba, 14(3), 1856–1866. Bionaz, M., Hurley, W., & Loor, J. (2012). Milk Proetin. Milk Protein Synthesis in the Lactating Mammary Gland : Insights from Transcriptomics Analyses (InTech). http:// dx.doi.org/10.5772/46054 Bionaz, M., & Loor, J. (2008). Gene networks driving bovine milk fat synthesis during the lactation cycle. BMC Genomics, 9, 1–21. https://doi.org/10.1186/1471-2164-9-366 Bionaz, M., & Loor, J. (2011). Gene networks driving bovine mammary protein synthesis during the lactation cycle. Bioinformatics and Biology Insights, 5, 83–98. https:// doi.org/10.4137/BBI.S7003 Bionaz, M., Osorio, J., & Loor, J. (2015). Nutrigenomics in dairy cows: Nutrients , transcription factors , and techniques American Society of Animal Science, 93(12), 5531–5553. https://doi.org/10.2527/jas2015-9192 Boisgard, R., Chanat, E., Lavialle, F., Pauloin, A., & Ollivier-Bousquet, M. (2001). Roads taken by milk proteins in mammary epithelial cells. Livestock Production Science, 70(1), 49–61. https://doi.org/https://doi.org/10.1016/S0301-6226(01)00197-X Capuco, A. V., & Ellis, S. E. (2013). Comparative aspects of mammary gland development and homeostasis. Annual Review of Animal Biosciences, 1(1), 179–202. https://doi. org/10.1146/annurev-animal-031412-103632 Choi, H. J., Chung, T. W., Kim, C. H., Jeong, H. S., Joo, M., Youn, B. H., & Ha, K. T. (2012). Estrogen induced β-1,4-galactosyltransferase 1 expression regulates proliferation of human breast cancer MCF-7 cells. Biochemical and Biophysical Research Communications, 426(4), 620–625. https://doi.org/10.1016/j.bbrc.2012.08.140 Curtis, R. V., Kim, J. J. M., Bajramaj, D. L., Doelman, J., Osborne, V. R., & Cant, J. P. (2013). Decline in mammary translational capacity during intravenous glucose infusion into lactating dairy cows. Journal of Dairy Science, 97(1), 430–438. https://doi. org/10.3168/jds.2013-7252 Dahanayaka, S. A. (2016). Isolation and characterization of porcine mammary epithelial cells from non-lactating and non-pregnant gilt. Journal of Animal Science, 93(11), 5186–5193. https://doi.org/10.2527/jas.2015-9250 Groner, B. (2002). Transcription factor regulation in mammary epithelial cells. Domestic Animal Endocrinology, 23(1–2), 25–32. https://doi.org/10.1016/S0739- 7240(02)00142-X Haenlein, G. F. W., & Wendorff, W. L. (2006). Sheep Milk. In Blackwell (Ed.), Handbook of milk of Non-bovine mammals (2nd ed., pp. 137–194). Hurley, W. . L. (2013). Proceedings of the london swine conference. In Lactation in motion (pp. 25–28). London. Kadegowda, A. K. G., Bionaz, M., Piperova, L. S., Erdman, R. A., & Loor, J. J. (2009). Peroxisome proliferator-activated receptor-γ activation and long-chain fatty acids alter lipogenic gene networks in bovine mammary epithelial cells to various extents. Journal of Dairy Science, 92(9), 4276–4289. https://doi.org/10.3168/jds.2008-1932 Kim, S. W., & Wu, G. (2009). Regulatory role for amino acids in mammary gland growth and milk synthesis. Amino Acids, 37(1), 89–95. https://doi.org/10.1007/s00726- 008-0151-5 Lei, J. (2012). Nutritional and regulatory role of branched-chain amino acids in lactation. Frontiers in Bioscience, 17(7), 2725. https://doi.org/10.2741/4082 Li, N., Zhao, F., Wei, C., Liang, M., Zhang, N., Wang, C., … Gao, X. J. (2014). Function of SREBP1 in the milk fat synthesis of dairy cow mammary epithelial cells. International Journal of Molecular Sciences, 15(9), 16998–17013. https://doi.org/10.3390/ ijms150916998 Liu, H., Zhao, K., & Liu, J. (2013). Effects of glucose availability on expression of the key genes involved in synthesis of milk fat, lactose and glucose metabolism in bovine mammary epithelial cells. PLoS ONE, 8(6), 6–11. https://doi.org/10.1371/journal. pone.0066092 Macias, H., & Hinck, L. (2013). Mammary gland development. Wiley Interdiscip Rev Dev Biol, 1(4), 533–557. https://doi.org/10.1002/wdev.35. Masedunskas, A., Chen, Y., Stussman, R., Weigert, R., & Mather, I. H. (2017). Kinetics of milk lipid droplet transport, growth, and secretion revealed by intravital imaging: lipid droplet release is intermittently stimulated by oxytocin. Molecular Biology of the Cell, 28(7), 935–946. https://doi.org/10.1091/mbc.e16-11-0776 McManaman, J. L. (2014). Lipid transport in the lactating mammary gland. Journal of Mammary Gland Biology and Neoplasia, 19(1), 35–42. https://doi.org/10.1007/ s10911-014-9318-8 McManaman, J. L., & Neville, M. C. (2003). Mammary physiology and milk secretion. Advanced Drug Delivery Reviews, 55(5), 629–641. https://doi.org/10.1016/S0169- 409X(03)00033-4 Neville, M. C., & Morton, J. (2001). Physiology and endocrine changes underlying human lactogenesis II. Pediatric Clinics of North America, 48, 35–52. DOI: 10.1093/ jn/131.11.3005S Neville, M. C., Neville, M. C., Mcfadden, T. B., & Forsyth, I. (2002). Hormonal regulation of mammary differentiation and milk secretion. Journal of Mammary Gland Biology and Neoplasia, 7(1), 49–66. https://doi.org/10.1023/A Nguyen, D. A., Parlow, A. F., & Neville, M. C. (2001). Hormonal regulation of tight junction closure in the mouse mammary epithelium during the transition from pregnancy to lactation. Journal of Endocrinology, 170(2), 347–356. https://doi.org/10.1677/ joe.0.1700347 Nickerson, S. C., & Akers, R. M. (1984). Biochemical and ultrastructural aspects of milk synthesis and secretion. Int. J. Biochem, 16(8), 855–865. Osorio, J. S., Lohakare, J., & Bionaz, M. (2016). Biosynthesis of milk fat, protein, and lactose: roles of transcriptional and posttranscriptional regulation. Physiological Genomics, 48(4), 231–256. https://doi.org/10.1152/physiolgenomics.00016.2015 Ostrowska, M., Jarczak, J., & Zwierzchowski, L. (2015). Glucose transporters in cattle - A review. Animal Science Papers and Reports, 33(3), 191–212. Peterson, T. R., Sengupta, S. S., Harris, T. E., Carmack, A. E., Kang, S. A., Balderas, E., … Sabatini, D. M. (2011). mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell, 146(3), 408–420. https://doi.org/10.1016/j.cell.2011.06.034 Preusting, I., Brumley, J., Odibo, L., Spatz, D. L., & Louis, J. M. (2017). Obesity as a predictor of delayed lactogenesis ii. Journal of Human Lactation, 33(4), 684–691. https:// doi.org/10.1177/0890334417727716 Rezaei, R., Wu, Z., Hou, Y., Bazer, F. W., & Wu, G. (2016). Amino acids and mammary gland development: Nutritional implications for milk production and neonatal growth. Journal of Animal Science and Biotechnology, 7(1), 20. https://doi.org/10.1186/ s40104-016-0078-8 Rius, A. G., Appuhamy, J. A. D. R. N., Cyriac, J., Kirovski, D., Becvar, O., Escobar, J., … Hanigan, M. D. (2010). Regulation of protein synthesis in mammary glands of lactating dairy cows by starch and amino acids. Journal of Dairy Science, 93(7), 3114–3127. https://doi.org/10.3168/jds.2009-2743 Rulquin, H., & Pisulewski, P. M. (2006). Effects of graded levels of duodenal infusions of leucine on mammary uptake and output in lactating dairy cows. Journal of Dairy Research, 73(3), 328–339. https://doi.org/10.1017/s0022029906001841 Salama, A. (2005). Modifying the lactation curve in dairy goats: effects of milking frequency, dry period and kidding interval. UAB (Ed.). Salama, A. A. K., Duque, M., Wang, L., Shahzad, K., Olivera, M., & Loor, J. J. (2019). Enhanced supply of methionine or arginine alters mechanistic target of rapamycin signaling proteins, messenger RNA, and microRNA abundance in heat-stressed bovine mammary epithelial cells in vitro. Journal of Dairy Science, 102(3), 2469–2480. https://doi.org/10.3168/jds.2018-15219 Sarbassov, D. D., Ali, S. M., & Sabatini, D. M. (2005). Growing roles for the mTOR pathway. Current Opinion in Cell Biology, 17(6), 596–603. https://doi.org/10.1016/j. ceb.2005.09.009 Toerien, C. A., Trout, D. R., & Cant, J. P. (2009). Nutritional stimulation of milk protein yield of cows is associated with changes in phosphorylation of mammary eukaryotic initiation factor 2 and ribosomal s6 kinase 1. The Journal of Nutrition, 140(2), 285–292. https://doi.org/10.3945/jn.109.114033 Truchet, S., & Honvo-Houéto, E. (2017). Physiology of milk secretion. Best Practice and Research: Clinical Endocrinology and Metabolism, 31(4), 367–384. https://doi. org/10.1016/j.beem.2017.10.008 Truchet, S., & Ollivier-Bousquet, M. (2009). Mammary gland secretion: hormonal coordination of endocytosis and exocytosis. Animal, 3(12), 1733–1742. https://doi. org/10.1017/s1751731109990589 Wall, E., & Mcfadden, T. (2012). Regulation of mammary development as it relates to changes in milk production efficiency. In Narongsak Chaiyabutr (Ed.), Milk Production - An Up-to-Date Overview of Animal Nutrition, Management and Health (pp. 257–288). InTech. Xu, J., Ji, J., & Yan, X. H. (2012). Cross-Talk between AMPK and mTOR in Regulating Energy Balance. Critical Reviews in Food Science and Nutrition, 52(5), 373–381. https://doi. org/10.1080/10408398.2010.500245 Zhao, F.-Q., & Keating, A. F. (2010). Expression and regulation of glucose transporters in the bovine mammary gland. Journal of Dairy Science, 90(July 2006), E76–E86. https://doi.org/10.3168/jds.2006-470 Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf application/pdf Colombia Universidad de Antioquia La lactanciavista desde múltiples enfoques; (2020): La lactanciavista desde múltiples enfoques (Mayo);p. 31-56.