Vector manipulation by a semi-persistent plant virus through disease symptom expression
The greenhouse whitefly (GWF), Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) is rarely associated with potato plants yet is the only known vector of the Potato yellow vein virus (PYVV). A host shift related with vector’s cognition often requires neural alterations by the virus. Howev...
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | Inglés |
Publicado: |
Cold Sprimg Harbor Laboratory (CSH)
2024
|
Materias: | |
Acceso en línea: | https://www.biorxiv.org/content/10.1101/2020.08.19.258178v1 http://hdl.handle.net/20.500.12324/39924 https://doi.org/10.1101/2020.08.19.258178 |
id |
RepoAGROSAVIA39924 |
---|---|
record_format |
dspace |
institution |
Corporación Colombiana de Investigación Agropecuaria |
collection |
Repositorio AGROSAVIA |
language |
Inglés |
topic |
Enfermedades de las plantas - H20 Solanum tuberosum Enfermedades de las plantas Nervadura foliar Aleyródidos Raíces y tubérculos http://aims.fao.org/aos/agrovoc/c_7221 http://aims.fao.org/aos/agrovoc/c_5962 http://aims.fao.org/aos/agrovoc/c_8181 http://aims.fao.org/aos/agrovoc/c_8381 |
spellingShingle |
Enfermedades de las plantas - H20 Solanum tuberosum Enfermedades de las plantas Nervadura foliar Aleyródidos Raíces y tubérculos http://aims.fao.org/aos/agrovoc/c_7221 http://aims.fao.org/aos/agrovoc/c_5962 http://aims.fao.org/aos/agrovoc/c_8181 http://aims.fao.org/aos/agrovoc/c_8381 Vasquez, Diego F. Borrero Echeverry, Felipe Rincon, Diego F. Vector manipulation by a semi-persistent plant virus through disease symptom expression |
description |
The greenhouse whitefly (GWF), Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) is rarely associated with potato plants yet is the only known vector of the Potato yellow vein virus (PYVV). A host shift related with vector’s cognition often requires neural alterations by the virus. However, PYVV, being semi-persistent, is not supposed to directly affect vector physiology. As such, we propose that changes in potato plants caused by PYVV infection should manipulate insect behaviour to increase transmission. Here, we studied the effect of PYVV infection and symptom expression on GWF biological parameters, and attraction towards infected and uninfected potato plants. We compared survival and development rates of GWF nymphs fed with PYVV-infected plants (symptomatic and asymptomatic) and healthy plants under controlled conditions. We also carried out free-choice tests to determine host preference of GWF adults as a function of PYVV infection and disease symptom expression. We found that PYVV infection (both symptomatic and asymptomatic) reduce GWF survival while increasing development time (in symptomatic plants). Combined, a prolonged development time and reduced survival should favour viral uptake and trigger migration of vectors from symptomatic plants short after acquiring the virus. We also found that symptom expression (yellowing) causes significantly greater GWF attraction and establishment compared to healthy or asymptomatic plants. Interestingly, we found that GWF adults that have previously fed on infected plants switch their host preference choosing and establishing on healthy potato plants, which clearly increases horizontal transmission rates. The mechanism through which this behavioural manipulation takes place is not yet well understood. Our results show that symptoms associated with PYVV infection may account for a set of behavioural modifications that make an improbable vector, such as the GWF, into an efficient agent that increases horizontal transmission rates of PYVV. |
format |
article |
author |
Vasquez, Diego F. Borrero Echeverry, Felipe Rincon, Diego F. |
author_facet |
Vasquez, Diego F. Borrero Echeverry, Felipe Rincon, Diego F. |
author_sort |
Vasquez, Diego F. |
title |
Vector manipulation by a semi-persistent plant virus through disease symptom expression |
title_short |
Vector manipulation by a semi-persistent plant virus through disease symptom expression |
title_full |
Vector manipulation by a semi-persistent plant virus through disease symptom expression |
title_fullStr |
Vector manipulation by a semi-persistent plant virus through disease symptom expression |
title_full_unstemmed |
Vector manipulation by a semi-persistent plant virus through disease symptom expression |
title_sort |
vector manipulation by a semi-persistent plant virus through disease symptom expression |
publisher |
Cold Sprimg Harbor Laboratory (CSH) |
publishDate |
2024 |
url |
https://www.biorxiv.org/content/10.1101/2020.08.19.258178v1 http://hdl.handle.net/20.500.12324/39924 https://doi.org/10.1101/2020.08.19.258178 |
work_keys_str_mv |
AT vasquezdiegof vectormanipulationbyasemipersistentplantvirusthroughdiseasesymptomexpression AT borreroecheverryfelipe vectormanipulationbyasemipersistentplantvirusthroughdiseasesymptomexpression AT rincondiegof vectormanipulationbyasemipersistentplantvirusthroughdiseasesymptomexpression |
_version_ |
1842255630000193536 |
spelling |
RepoAGROSAVIA399242024-08-24T03:00:30Z Vector manipulation by a semi-persistent plant virus through disease symptom expression Vector manipulation by a semi-persistent plant virus through disease symptom expression Vasquez, Diego F. Borrero Echeverry, Felipe Rincon, Diego F. Enfermedades de las plantas - H20 Solanum tuberosum Enfermedades de las plantas Nervadura foliar Aleyródidos Raíces y tubérculos http://aims.fao.org/aos/agrovoc/c_7221 http://aims.fao.org/aos/agrovoc/c_5962 http://aims.fao.org/aos/agrovoc/c_8181 http://aims.fao.org/aos/agrovoc/c_8381 The greenhouse whitefly (GWF), Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) is rarely associated with potato plants yet is the only known vector of the Potato yellow vein virus (PYVV). A host shift related with vector’s cognition often requires neural alterations by the virus. However, PYVV, being semi-persistent, is not supposed to directly affect vector physiology. As such, we propose that changes in potato plants caused by PYVV infection should manipulate insect behaviour to increase transmission. Here, we studied the effect of PYVV infection and symptom expression on GWF biological parameters, and attraction towards infected and uninfected potato plants. We compared survival and development rates of GWF nymphs fed with PYVV-infected plants (symptomatic and asymptomatic) and healthy plants under controlled conditions. We also carried out free-choice tests to determine host preference of GWF adults as a function of PYVV infection and disease symptom expression. We found that PYVV infection (both symptomatic and asymptomatic) reduce GWF survival while increasing development time (in symptomatic plants). Combined, a prolonged development time and reduced survival should favour viral uptake and trigger migration of vectors from symptomatic plants short after acquiring the virus. We also found that symptom expression (yellowing) causes significantly greater GWF attraction and establishment compared to healthy or asymptomatic plants. Interestingly, we found that GWF adults that have previously fed on infected plants switch their host preference choosing and establishing on healthy potato plants, which clearly increases horizontal transmission rates. The mechanism through which this behavioural manipulation takes place is not yet well understood. Our results show that symptoms associated with PYVV infection may account for a set of behavioural modifications that make an improbable vector, such as the GWF, into an efficient agent that increases horizontal transmission rates of PYVV. Papa-Solanum tuberosum 2024-08-23T16:48:06Z 2024-08-23T16:48:06Z 2020-08-20 2020 article Artículo científico http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 https://www.biorxiv.org/content/10.1101/2020.08.19.258178v1 http://hdl.handle.net/20.500.12324/39924 https://doi.org/10.1101/2020.08.19.258178 reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA eng BioRxiv 1 26 Agresti, A. (2018). An introduction to categorical data analysis: John Wiley & Sons.Google Scholar Alizon, S., Hurford, A., Mideo, N., & Van Baalen, M. (2009). Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. J Evol Biol, 22(2), 245–259. doi: 10.1111/j.1420-9101.2008.01658.xCrossRefPubMedWeb of ScienceGoogle Scholar Bak, A., Cheung, A. L., Yang, C., Whitham, S. A., & Casteel, C. L. (2017). A viral protease relocalizes in the presence of the vector to promote vector performance. Nature Communications, 8(1), 14493. doi: 10.1038/ncomms14493CrossRefPubMedGoogle Scholar Bosque-Pérez, N. A., & Eigenbrode, S. D. (2011). The influence of virus-induced changes in plants on aphid vectors: Insights from luteovirus pathosystems. Virus Research, 159(2), 201–205. doi: 10.1016/j.virusres.2011.04.020CrossRefPubMedWeb of ScienceGoogle Scholar Bretz, F., Dette, H., & Pinheiro, J. C. (2010). Practical considerations for optimal designs in clinical dose finding studies. Statistics in Medicine, 29(7-8), 731–742. doi: 10.1002/sim.3802CrossRefPubMedGoogle Scholar Byrne, D. N., & Bellows Jr, T. S. (1991). Whitefly biology. Annual Review of Entomology, 36(1), 431–457.CrossRefWeb of ScienceGoogle Scholar Casteel, C. L., & Jander, G. (2013). New synthesis: Investigating mutualisms in virus-vector interactions. Journal of Chemical Ecology, 39(7), 809–809. doi: 10.1007/s10886-013-0305-0CrossRefPubMedGoogle Scholar Casteel, C. L., Yang, C., Nanduri, A. C., De Jong, H. N., Whitham, S. A., & Jander, G. (2014). The NIa-Pro protein of Turnip mosaic virus improves growth and reproduction of the aphid vector, Myzus persicae (green peach aphid). The Plant Journal, 77(4), 653–663. doi: 10.1111/tpj.12417CrossRefPubMedWeb of ScienceGoogle Scholar Chesnais, Q., Mauck, K. E., Bogaert, F., Bamière, A., Catterou, M., Spicher, F., … Ameline, A. (2019). Virus effects on plant quality and vector behavior are species specific and do not depend on host physiological phenotype. Journal of Pest Science, 92(2), 791–804. doi: 10.1007/s10340-019-01082-zCrossRefGoogle Scholar Colvin, J., Omongo, C. A., Govindappa, M. R., Stevenson, P. C., Maruthi, M. N., Gibson, G., … Muniyappa, V. (2006). Host-plant viral infection effects on arthropod-vector population growth, development and behaviour: Management and epidemiological implications Advances in Virus Research (Vol. 67, pp. 419–452): Academic Press.Google Scholar Cuadros, D. F., Hernandez, A., Torres, M. F., Torres, D. M., Branscum, A. J., & Rincon, D. F. (2017). Vector transmission alone fails to explain the potato yellow vein virus epidemic among potato crops in Colombia. [Original Research]. Frontiers in Plant Science, 8(1654), 1654. doi: 10.3389/fpls.2017.01654CrossRefGoogle Scholar Curry, J. P., & Pimentel, D. (1971). Life cycle of the Greenhouse Whitefly, Trialeurodes vaporariorum, and population trends of the whitefly and its parasite, Encarsis formosa, on two tomato varieties. Annals of the Entomological Society of America, 64(5), 1188–1190. doi: 10.1093/aesa/64.5.1188 %JCrossRefGoogle Scholar Fereres, A. (2015). Insect vectors as drivers of plant virus emergence. Current Opinion in Virology, 10(Complete), 42-46. doi: 10.1016/j.coviro.2014.12.008CrossRefGoogle Scholar Fereres, A., & Moreno, A. (2009). Behavioural aspects influencing plant virus transmission by homopteran insects. Virus Research, 141(2), 158–168. doi: 10.1016/j.virusres.2008.10.020CrossRefPubMedWeb of ScienceGoogle Scholar Fereres, A., Peñaflor, M. F. G., Favaro, C. F., Azevedo, K. E., Landi, C. H., Maluta, N. K., … Lopes, J. R. J. V. (2016). Tomato infection by whitefly-transmitted circulative and non-circulative viruses induce contrasting changes in plant volatiles and vector behaviour. Viruses, 8(8), 225. doi: 10.3390/v8080225CrossRefPubMedGoogle Scholar Gallet, R., Michalakis, Y., & Blanc, S. (2018). Vector-transmission of plant viruses and constraints imposed by virus–vector interactions. Current Opinion in Virology, 33, 144–150. doi: 10.1016/j.coviro.2018.08.005CrossRefGoogle Scholar Guzmán-Barney, M., Franco-Lara, L., Rodríguez, D., Vargas, L., & Fierro, J. E. (2012). Yield losses in Solanum tuberosum Group Phureja Cultivar Criolla Colombia in Plants with Symptoms of PYVV in Field Trials. American Journal of Potato Research, 89(6), 438–447. doi: 10.1007/s12230-012-9265-0CrossRefGoogle Scholar Hamelin, F. M., Allen, L. J. S., Prendeville, H. R., Hajimorad, M. R., & Jeger, M. J. (2016). The evolution of plant virus transmission pathways. Journal of Theoretical Biology, 396, 75–89. doi: 10.1016/j.jtbi.2016.02.017CrossRefGoogle Scholar He, W.-B., Li, J., & Liu, S.-S. (2015). Differential profiles of direct and indirect modification of vector feeding behaviour by a plant virus. Scientific Reports, 5(1), 7682. doi: 10.1038/srep07682CrossRefGoogle Scholar Hernández-Guzmán, A. K., & Guzmán-Barney, M. (2014). Detección del virus del amarillamiento de las nervaduras de la hoja de la papa en diferentes órganos de Solanum tuberosum grupo Phureja cv Criolla Colombia utilizando RT-PCR convencional y en tiempo real. Revista Colombiana de Biotecnología, 16(1), 74–85.Google Scholar Hogenhout, S. A., Ammar, E.-D., Whitfield, A. E., & Redinbaugh, M. G. (2008). Insect vector interactions with persistently transmitted viruses. Annual Review of Phytopathology, 46(1), 327–359. doi: 10.1146/annurev.phyto.022508.092135CrossRefPubMedWeb of ScienceGoogle Scholar Jia, D., Chen, Q., Mao, Q., Zhang, X., Wu, W., Chen, H., … Wei, T. (2018). Vector mediated transmission of persistently transmitted plant viruses. Current Opinion in Virology, 28, 127–132. doi: 10.1016/j.coviro.2017.12.004CrossRef Jones, D. R. (2003). Plant viruses transmitted by whiteflies. European Journal of Plant Pathology, 109(3), 195–219. doi: 10.1023/A:1022846630513CrossRefGoogle Scholar Lee, D.-H., Nyrop, J. P., & Sanderson, J. P. (2010). Effect of host experience of the greenhouse whitefly, Trialeurodes vaporariorum, on trap cropping effectiveness. Entomologia Experimentalis et Applicata, 137(2), 193–203. doi: 10.1111/j.1570-7458.2010.01052.xCrossRefGoogle Scholar Libersat, F., Kaiser, M., & Emanuel, S. (2018). Mind control: How parasites manipulate cognitive functions in their insect hosts. [Perspective]. Frontiers in Psychology, 9(572). doi: 10.3389/fpsyg.2018.00572CrossRefGoogle Scholar Lipsitch, M., Siller, S., & Nowak, M. A. (1996). The evolution of virulence in pathogens with vertical and horizontal transmission. Evolution, 50(5), 1729–1741. doi: 10.1111/j.1558-5646.1996.tb03560.xCrossRefPubMedWeb of ScienceGoogle Scholar Lu, S., Li, J., Wang, X., Song, D., Bai, R., Shi, Y., … Yan, F. (2017). A semipersistent plant virus differentially manipulates feeding behaviors of different sexes and biotypes of its whitefly vector. Viruses, 9(1), 4. doi: 10.3390/v9010004CrossRefGoogle Scholar Martelli, G. P., Agranovsky, A. A., Bar-Joseph, M., Boscia, D., Candresse, T., Coutts, R. H. A., … Yoshikawa, N. (2002). The family Closteroviridae revised. Archives of Virology, 147(10), 2039–2044. doi: 10.1007/s007050200048CrossRefPubMedGoogle Scholar C. M. MalmstromMauck, K. E., Chesnais, Q., & Shapiro, L. R. (2018). Evolutionary determinants of host and vector manipulation by plant viruses. In C. M. Malmstrom (Ed.), Advances in Virus Research (Vol. 101, pp. 189-250): Academic Press.Google Scholar Mauck, K. E., De Moraes, C. M., & Mescher, M. C. (2016). Effects of pathogens on sensory-mediated interactions between plants and insect vectors. Current Opinion in Plant Biology, 32, 53–61.Google Scholar Messenger, S. L., Molineux, I. J., & Bull, J. J. (1999). Virulence evolution in a virus obeys a trade-off. Proc Biol Sci, 266(1417), 397–404. doi: 10.1098/rspb.1999.0651CrossRefPubMedWeb of ScienceGoogle Scholar Navas-Castillo, J., López-Moya, J. J., & Aranda, M. A. (2014). Whitefly-transmitted RNA viruses that affect intensive vegetable production. Annals of Applied Biology, 165(2), 155–171. doi: 10.1111/aab.12147CrossRefGoogle Scholar Ng, J. C. K., & Zhou, J. S. (2015). Insect vector–plant virus interactions associated with non-circulative, semi-persistent transmission: Current perspectives and future challenges. Current Opinion in Virology, 15, 48–55. doi: 10.1016/j.coviro.2015.07.006CrossRefPubMedGoogle Scholar Osorio, M., Marques, A., Romay, G., Roa, S., Demey, J., & Vegas, A. (2016). Adaptación de la técnica RT-PCR para el diagnóstico del virus del amarillamiento de las venas de papa en Venezuela. Bioagro, 28(1), 047–052.Google Scholar Pagán, I., Montes, N., Milgroom, M. G., & García-Arenal, F. (2014). Vertical transmission selects for reduced virulence in a plant virus and for increased resistance in the host. PLOS Pathogens, 10(7), e1004293. doi: 10.1371/journal.ppat.1004293CrossRefPubMedGoogle Scholar Peñaflor, M. F. G. V., Mauck, K. E., Alves, K. J., De Moraes, C. M., & Mescher, M. C. (2016). Effects of single and mixed infections of Bean pod mottle virus and Soybean mosaic virus on host-plant chemistry and host–vector interactions. Functional Ecology, 30(10), 1648–1659. doi: 10.1111/1365-2435.12649CrossRefGoogle Scholar Core Team. (2020). R: A Language and environment for statistical computing (Version Version 3.5.1. “Feather Spray”). Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/Google Scholar Rincon, D. F., Vasquez, D. F., Rivera-Trujillo, H. F., Beltrán, C., & Borrero-Echeverry, F. (2019). Economic injury levels for the potato yellow vein disease and its vector, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae), affecting potato crops in the Andes. Crop Protection, 119, 52–58. doi: 10.1016/j.cropro.2019.01.002CrossRefGoogle Scholar Ritz, C., Baty, F., Streibig, J. C., & Gerhard, D. (2016). Dose-response analysis using R. PLOS ONE, 10(12), e0146021. doi: 10.1371/journal.pone.0146021CrossRefGoogle Scholar Shah, M. M. R., & Liu, T.-X. (2013). Feeding experience of Bemisia tabaci (Hemiptera: Aleyrodidae) affects their performance on different host plants. PloS one, 8(10), e77368–e77368. doi: 10.1371/journal.pone.0077368CrossRefGoogle Scholar Signorell, A., Aho, K., Alfons, A., Anderegg, N., Aragon, T., Arppe, A., … Zeileis, A. (2020). DescTools: tools for descriptive statistics. R package version 0.99. 34.Google Scholar Stockton, D. G., Martini, X., Patt, J. M., & Stelinski, L. L. (2016). TheiInfluence of learning on host plant preference in a significant phytopathogen vector, Diaphorina citri. PLOS ONE, 11(3), e0149815. doi: 10.1371/journal.pone.0149815CrossRefGoogle Scholar Su, Q., Preisser, E. L., Zhou, X. M., Xie, W., Liu, B. M., Wang, S. L., … Zhang, Y. J. (2015). Manipulation of host quality and defense by a plant virus improves performance of whitefly vectors. Journal of Economic Entomology, 108(1), 11–19. doi: 10.1093/jee/tou012 %JCrossRefPubMedGoogle Scholar Szczepaniec, A., & Finke, D. (2019). Plant-vector-pathogen interactions in the context of drought stress. [Mini Review]. Frontiers in Ecology and Evolution, 7(262). doi: 10.3389/fevo.2019.00262CrossRefGoogle Scholar Tzanetakis, I., Martin, R., & Wintermantel, W. (2013). Epidemiology of criniviruses: An emerging problem in world agriculture. [Review]. frontiers in Microbiology, 4(119), 119. doi: 10.3389/fmicb.2013.00119CrossRefGoogle Scholar Vaishampayan, S. M., Kogan, M., Waldbauer, G. P., & Woolley, J. T. (1975). Spectral specific responses in the visual behavior of the Greenhouse Whitefly, Trialeurodes Vaporariorum (Homoptera: Aleyrodidae). Entomologia Experimentalis et Applicata, 18(3), 344–356. doi: 10.1111/j.1570-7458.1975.tb00407.xCrossRefGoogle Scholar Van Roermund, H. J. W., & van Lenteren, J. C. (1992). The parasite-host relationship between Encarsia formosa (Hymenoptera: Aphelinidae) and Trialeurodes vaporariorum (Homoptera: Aleyrodidae) XXXIV. Life-history parameters of the greenhouse whitefly, Trialeurodes vaporariorum as a function of host plant and temperature (Vol. 92-3). Wageningen, Netherlands: Wageningen Agricultural University Papers.Google Scholar Vargas, A. (2010). Respuesta de la Colección Central Colombiana de Solanum tuberosum de la Universidad Nacional de Colombia a la infección con Potato yellow vein virus (PYVV). M.Sc, Universidad Nacional de Colombia, Bogotá, Colombia.Google Scholar Whitfield, A. E., Falk, B. W., & Rotenberg, D. (2015). Insect vector-mediated transmission of plant viruses. Virology, 479-480, 278–289. doi: 10.1016/j.virol.2015.03.026CrossRefGoogle Scholar Wright, S. P. (1992). Adjusted P-Values for simultaneous inference. Biometrics, 48(4), 1005–1013. doi: 10.2307/2532694CrossRefWeb of ScienceGoogle Scholar ↵Wu, Y., Davis, T. S., & Eigenbrode, S. D. (2014). Aphid behavioral responses to virus-infected plants are similar despite divergent fitness effects. Entomologia Experimentalis et Applicata, 153(3), 246–255. doi: 10.1111/eea.12246CrossRefGoogle Scholar Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf application/pdf C.I Tibaitatá Colombia Cold Sprimg Harbor Laboratory (CSH) BioRxiv; (2020): BioRxiv (Augu.);p. 1-26 |