Comportamiento microclimático diurno, en temporada seca, de tres estructuras para agricultura protegida en el trópico seco

Introducción: En Costa Rica, el uso de estructuras agrícolas protegidas para la producción hortícola se ha incrementado en los últimos años, aunque existe poca información sobre su comportamiento microclimático. Objetivo: Nuestro objetivo fue evaluar el comportamiento de los patrones de flujo de air...

Full description

Bibliographic Details
Main Authors: Villagran, Edwin Andres, Jaramillo, Jorge Eliecer, Pacheco, RommelIgor León, Ramirez Matarrita, Roberto
Format: article
Language:Español
Published: Universidad Estatal a Distancia de Costa Rica 2024
Subjects:
Online Access:https://revistas.uned.ac.cr/index.php/cuadernos/article/view/285
http://hdl.handle.net/20.500.12324/39923
https://doi.org/10.22458/urj.v12i2.2854
id RepoAGROSAVIA39923
record_format dspace
institution Corporación Colombiana de Investigación Agropecuaria
collection Repositorio AGROSAVIA
language Español
topic Investigación agropecuaria - A50
Agricultura alternativa
Zona tropical
Humedad relativa
Temperatura
Transversal
http://aims.fao.org/aos/agrovoc/c_28792
http://aims.fao.org/aos/agrovoc/c_7979
http://aims.fao.org/aos/agrovoc/c_6496
http://aims.fao.org/aos/agrovoc/c_7657
spellingShingle Investigación agropecuaria - A50
Agricultura alternativa
Zona tropical
Humedad relativa
Temperatura
Transversal
http://aims.fao.org/aos/agrovoc/c_28792
http://aims.fao.org/aos/agrovoc/c_7979
http://aims.fao.org/aos/agrovoc/c_6496
http://aims.fao.org/aos/agrovoc/c_7657
Villagran, Edwin Andres
Jaramillo, Jorge Eliecer
Pacheco, RommelIgor León
Ramirez Matarrita, Roberto
Comportamiento microclimático diurno, en temporada seca, de tres estructuras para agricultura protegida en el trópico seco
description Introducción: En Costa Rica, el uso de estructuras agrícolas protegidas para la producción hortícola se ha incrementado en los últimos años, aunque existe poca información sobre su comportamiento microclimático. Objetivo: Nuestro objetivo fue evaluar el comportamiento de los patrones de flujo de aire y su efecto en la distribución espacial de la temperatura y la humedad relativa dentro de tres tipos de estructuras agrícolas protegidas diseñadas para sistemas agrícolas familiares. Métodos: El estudio se realizó en Guanacaste, Costa Rica, en la época seca de 2019, con un modelo de dinámica de fluidos computacional para el desarrollo de nueve simulaciones de estado estacionario. El modelo 3D se validó experimentalmente mediante la recopilación de información climática en cada uno de los prototipos de estructura. Resultados: Para las tres estructuras, los parámetros de bondad de ajuste entre datos medidos y simulados tuvieron error absoluto medio y error cuadrático medio de 0,21-0,44°C y 1,65-3,40% de humedad relativa. Los datos medidos y simulados tuvieron las mismas tendencias; los patrones de flujo de aire dentro de las estructuras dependieron en gran medida de la velocidad y dirección del viento externo. Las condiciones de temperatura y humedad relativa dentro de las tres estructuras tuvieron un comportamiento considerablemente homogéneo. Conclusiones: En las tres pequeñas estructuras agrícolas que probamos, usadas habitualmente en agricultura familiar, no se encontraron diferencias significativas del comportamiento térmico e higrométrico interno en estas condiciones de prueba.
format article
author Villagran, Edwin Andres
Jaramillo, Jorge Eliecer
Pacheco, RommelIgor León
Ramirez Matarrita, Roberto
author_facet Villagran, Edwin Andres
Jaramillo, Jorge Eliecer
Pacheco, RommelIgor León
Ramirez Matarrita, Roberto
author_sort Villagran, Edwin Andres
title Comportamiento microclimático diurno, en temporada seca, de tres estructuras para agricultura protegida en el trópico seco
title_short Comportamiento microclimático diurno, en temporada seca, de tres estructuras para agricultura protegida en el trópico seco
title_full Comportamiento microclimático diurno, en temporada seca, de tres estructuras para agricultura protegida en el trópico seco
title_fullStr Comportamiento microclimático diurno, en temporada seca, de tres estructuras para agricultura protegida en el trópico seco
title_full_unstemmed Comportamiento microclimático diurno, en temporada seca, de tres estructuras para agricultura protegida en el trópico seco
title_sort comportamiento microclimático diurno, en temporada seca, de tres estructuras para agricultura protegida en el trópico seco
publisher Universidad Estatal a Distancia de Costa Rica
publishDate 2024
url https://revistas.uned.ac.cr/index.php/cuadernos/article/view/285
http://hdl.handle.net/20.500.12324/39923
https://doi.org/10.22458/urj.v12i2.2854
work_keys_str_mv AT villagranedwinandres comportamientomicroclimaticodiurnoentemporadasecadetresestructurasparaagriculturaprotegidaeneltropicoseco
AT jaramillojorgeeliecer comportamientomicroclimaticodiurnoentemporadasecadetresestructurasparaagriculturaprotegidaeneltropicoseco
AT pachecorommeligorleon comportamientomicroclimaticodiurnoentemporadasecadetresestructurasparaagriculturaprotegidaeneltropicoseco
AT ramirezmatarritaroberto comportamientomicroclimaticodiurnoentemporadasecadetresestructurasparaagriculturaprotegidaeneltropicoseco
AT villagranedwinandres diurnalmicroclimaticbehaviorduringthedryseasonofthreestructuresforprotectedagricultureinthedrytropics
AT jaramillojorgeeliecer diurnalmicroclimaticbehaviorduringthedryseasonofthreestructuresforprotectedagricultureinthedrytropics
AT pachecorommeligorleon diurnalmicroclimaticbehaviorduringthedryseasonofthreestructuresforprotectedagricultureinthedrytropics
AT ramirezmatarritaroberto diurnalmicroclimaticbehaviorduringthedryseasonofthreestructuresforprotectedagricultureinthedrytropics
_version_ 1842256050483363840
spelling RepoAGROSAVIA399232024-08-24T03:01:58Z Comportamiento microclimático diurno, en temporada seca, de tres estructuras para agricultura protegida en el trópico seco Diurnal microclimatic behavior, during the dry season, of three structures for protected agriculture in the dry tropics Villagran, Edwin Andres Jaramillo, Jorge Eliecer Pacheco, RommelIgor León Ramirez Matarrita, Roberto Investigación agropecuaria - A50 Agricultura alternativa Zona tropical Humedad relativa Temperatura Transversal http://aims.fao.org/aos/agrovoc/c_28792 http://aims.fao.org/aos/agrovoc/c_7979 http://aims.fao.org/aos/agrovoc/c_6496 http://aims.fao.org/aos/agrovoc/c_7657 Introducción: En Costa Rica, el uso de estructuras agrícolas protegidas para la producción hortícola se ha incrementado en los últimos años, aunque existe poca información sobre su comportamiento microclimático. Objetivo: Nuestro objetivo fue evaluar el comportamiento de los patrones de flujo de aire y su efecto en la distribución espacial de la temperatura y la humedad relativa dentro de tres tipos de estructuras agrícolas protegidas diseñadas para sistemas agrícolas familiares. Métodos: El estudio se realizó en Guanacaste, Costa Rica, en la época seca de 2019, con un modelo de dinámica de fluidos computacional para el desarrollo de nueve simulaciones de estado estacionario. El modelo 3D se validó experimentalmente mediante la recopilación de información climática en cada uno de los prototipos de estructura. Resultados: Para las tres estructuras, los parámetros de bondad de ajuste entre datos medidos y simulados tuvieron error absoluto medio y error cuadrático medio de 0,21-0,44°C y 1,65-3,40% de humedad relativa. Los datos medidos y simulados tuvieron las mismas tendencias; los patrones de flujo de aire dentro de las estructuras dependieron en gran medida de la velocidad y dirección del viento externo. Las condiciones de temperatura y humedad relativa dentro de las tres estructuras tuvieron un comportamiento considerablemente homogéneo. Conclusiones: En las tres pequeñas estructuras agrícolas que probamos, usadas habitualmente en agricultura familiar, no se encontraron diferencias significativas del comportamiento térmico e higrométrico interno en estas condiciones de prueba. Fondo Regional de Tecnología Agropecuaria - FONTAGRO 2024-08-23T16:43:23Z 2024-08-23T16:43:23Z 2020-10-13 2020 article Artículo científico http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 https://revistas.uned.ac.cr/index.php/cuadernos/article/view/285 1659-441X http://hdl.handle.net/20.500.12324/39923 https://doi.org/10.22458/urj.v12i2.2854 reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA spa Cuadernos de investigación UNED 12 2 1 15 Ansys. (2016). ANSYS ICEM CFD User Manual. In Knowledge Creation Diffusion Utilization (Vol. 15317, Issue October). DOI: 10.1016/j.joen.2015.02.033. Ali, H. B., Bournet, P. E., Cannavo, P., & Chantoiseau, E. (2018). Development of a CFD crop submodel for simulating microclimate and transpiration of ornamental plants grown in a greenhouse under water restriction. Computers and Electronics in Agriculture, 149, 26-40. DOI: 10.17660/ActaHortic.2018.1227.5. Baeza, E. J., Pérez-Parra, J. J., Montero, J. I., Bailey, B. J., López, J. C., & Gázquez, J. C. (2009). Analysis of the role of sidewall vents on buoyancy-driven natural ventilation in parral-type greenhouses with and without insect screens using computational fluid dynamics. Biosystems Engineering, 104(1), 86–96. DOI: 10.1016/J.BIOSYSTEMSENG.2009.04.008. Bañuelos-Ruedas, F., Ángeles-Camacho, C., & Rios-Marcuello, S. (2010). Analysis and validation of the methodology used in the extrapolation of wind speed data at different heights. Renewable and Sustainable Energy Reviews,14(8), 2383-2391. DOI: 10.1016/j.rser.2010.05.001. Baptista, F. J., Bailey, B. J., & Meneses, J. F. (2012). Effect of nocturnal ventilation on the occurrence of Botrytis cinerea in Mediterranean unheated tomato greenhouses. Crop Protection, 32, 144–149. DOI: 10.1016/j.cropro.2011.11.005. Bartzanas, T., Katsoulas, N., & Kittas, C. (2012). Solar radiation distribution in screenhouses: A CFD approach. Acta Horticulturae, 956, 449–456. DOI: 10.17660/ActaHortic.2012.956.52 Espinal-Montes, V., Lorenzo López-Cruz, I., Rojano-Aguilar, A., Romantchik-Kriuchova, E., & Ramírez-Arias, A. (2015). Determination of night-time thermal gradients in a greenhouse using computational thermal dynamics. Agrociencia, 49, 233–247. Espinoza, K., López, A., Valera, D. L., Molina-Aiz, F. D., Torres, J. A., & Peña, A. (2017). Effects of ventilator configuration on the flow pattern of a naturally-ventilated three-span Mediterranean greenhouse. Biosystems Engineering, 164, 13–30. DOI: 10.1016/j.biosystemseng.2017.10.001 Flores-Velazquez, J., & Montero, J. I. (2008). Computational fluid dynamics (CFD) study of large scale screenhouses. Acta Horticulturae, 797, 117–122. DOI: 10.17660/ActaHortic.2008.797.14. Flores-Velázquez, J., Mejía-Saenz, E., Montero-Camacho, J. I., & Rojano, A. (2011). Analísis nuḿrico del clima interior en un invernadero de tres naves con ventilacín mećnica. Agrociencia, 45(5), 545–560. Flores-Velazquez, J., Guerrero, F. V., Lopez, I. L., Montero, J. I., & Piscia, D. (2013). 3-Dimensional thermal analysis of a screenhouse with plane and multispan roof by using computational fluid dynamics (CFD). Acta Horticulturae, 1008, 151–158. DOI: 10.17660/ActaHortic.2013.1008.19. Flores-Velazquez, J., Ojeda, W., Villarreal-Guerrero, F., & Rojano, A. (2017). Effect of crops on natural ventilation in a screenhouse evaluated by CFD simulations. Acta Horticulturae, 1170, 95–101. DOI: 10.17660/ActaHortic.2017.1170.10. He, X., Wang, J., Guo, S., Zhang, J., Wei, B., Sun, J., & Shu, S. (2017). Ventilation optimization of solar greenhouse with removable back walls based on CFD. Computers and Electronics in Agriculture, 149,16-25 DOI: 10.1016/j.compag.2017.10.001 Kim, K., Yoon, J. Y., Kwon, H. J., Han, J. H., Eek Son, J., Nam, S. W., Giacomelli, G. A., & Lee, I. B. (2008). 3-D CFD analysis of relative humidity distribution in greenhouse with a fog cooling system and refrigerative dehumidifiers. Biosystems Engineering, 100(2), 245–255. DOI: 10.1016/j.biosystemseng.2008.03.006 Ma, D., Carpenter, N., Maki, H., Rehman, T. U., Tuinstra, M. R., & Jin, J. (2019). Greenhouse environment modeling and simulation for microclimate control. Computers and Electronics in Agriculture, 162, 134-142. DOI: 10.1016/j.compag.2019.04.013 MAG. (2018). Boletín del programa nacional sectorial de producción agrícola bajo ambientes protegidos. Recuperado de http://www.mag.go.cr/acerca_del_mag/estructura/oficinas/prog-nac-aprot.html. Majdoubi, H., Boulard, T., Fatnassi, H., & Bouirden, L. (2009). Airflow and microclimate patterns in a one-hectare Canary type greenhouse: an experimental and CFD assisted study. Agricultural and Forest Meteorology, 149(6–7), 1050–1062. DOI:10.1016/j.agrformet.2009.01.002. McCartney, L., & Lefsrud, M. G. (2018). Field trials of the Natural Ventilation Augmented Cooling (NVAC) greenhouse. Biosystems Engineering, 174, 159–172. DOI: 10.1016/j.biosystemseng.2018.07.004. Mesmoudi, K., Meguallati, K., & Bournet, P. (2017). Effect of the greenhouse design on the thermal behavior and microclimate distribution in greenhouses installed under semi-arid climate. Heat Transfer-Asian Research. DOI: 10.1002/htj.21274. Molina-Aiz, F. D., Valera, D. L., Peña, A. A., Gil, J. A., & López, A. (2009). A study of natural ventilation in an Almería-type greenhouse with insect screens by means of tri-sonic anemometry. Biosystems Engineering, 104(2), 224–242. DOI: 10.1016/j.biosystemseng.2009.06.013. Molina-Aiz, F. D., Valera, D. L., & López, A. (2011). Airflow at the openings of a naturally ventilated Almería-type greenhouse with insect-proof screens. Acta Horticulturae, 893, 545–552. DOI: 10.17660/ActaHortic.2011.893.56. Molina-Aiz, F. D., Norton, T., López, A., Reyes-Rosas, A., Moreno, M. A., Marín, P., Espinoza, K., & Valera, D. L. (2017). Using computational fluid dynamics to analyse the CO2 transfer in naturally ventilated greenhouses. Acta Horticulturae, 1182, 283–292. DOI:10.17660/ActaHortic.2017.1182.34 Norton, T., Sun, D.-W., Grant, J., Fallon, R., & Dodd, V. (2007). Applications of computational fluid dynamics (CFD) in the modelling and design of ventilation systems in the agricultural industry: A review. Bioresource Technology, 98(12), 2386–2414. DOI: 10.1016/j.biortech.2006.11.025. Perén, J. I., van Hooff, T., Leite, B. C. C., & Blocken, B. (2016). CFD simulation of wind-driven upward cross ventilation and its enhancement in long buildings: Impact of single-span versus double-span leeward sawtooth roof and opening ratio. Building and Environment, 96, 142–156. DOI: 10.1016/j.buildenv.2015.11.021. Piscia, D., Muñoz, P., Panadès, C., & Montero, J. I. (2015). A method of coupling CFD and energy balance simulations to study humidity control in unheated greenhouses. Computers and Electronics in Agriculture, 115, 129–141. DOI: 10.1016/J.COMPAG.2015.05.005. Ramírez-Vargas, C., & Nienhuis, J. (2012). Evaluación del crecimiento y productividad del tomate (Lycopersicon esculentum Mill) bajo cultivo protegido en tres localidades de Costa Rica. Revista Tecnología En Marcha, 25(1), 3-15. Rojas Rishor, A. (2015). Análisis del comportamiento térmico de un invernadero construido en ladera, aplicando dinámica de fluidos computacional. (Tesis de pregrado, Universidad De Costa Rica, San José, Costa Rica). Recuperado de http://repositorio.sibdi.ucr.ac.cr:8080/jspui/bitstream/123456789/2946/1/38803.pdf Saberian, A., & Sajadiye, S. M. (2019). The effect of dynamic solar heat load on the greenhouse microclimate using CFD simulation. Renewable Energy, 138, 722-737 DOI: 10.1016/j.renene.2019.01.108. Teitel, M., Dvorkin, D., Haim, Y., Tanny, J., & Seginer, I. (2009). Comparison of measured and simulated flow through screens: Effects of screen inclination and porosity. Biosystems Engineering, 104(3), 404–416. DOI: 10.1016/j.biosystemseng.2009.07.006. Teitel, M., & Wenger, E. (2014). Air exchange and ventilation efficiencies of a monospan greenhouse with one inflow and one outflow through longitudinal side openings. Biosystems Engineering, 119, 98–107. DOI: 10.1016/j.biosystemseng.2013.11.001. Teitel, M., Garcia-Teruel, M., Ibanez, P. F., Tanny, J., Laufer, S., Levi, A., & Antler, A. (2015). Airflow characteristics and patterns in screenhouses covered with fine-mesh screens with either roof or roof and side ventilation. Biosystems Engineering, 131, 1–14. DOI: 10.1016/j.biosystemseng.2014.12.010 Tominaga, Y., Mochida, A., Yoshie, R., Kataoka, H., Nozu, T., Yoshikawa, M., & Shirasawa, T. (2008). AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. Journal of Wind Engineering and Industrial Aerodynamics, 96(10–11), 1749–1761. DOI: 10.1016/j.jweia.2008.02.058. Tong, G., & Christopher, D. M. (2018). New insights on span selection for Chinese solar greenhouses using CFD analyses. Computers and Electronics in Agriculture, 149, 3–15. DOI: 10.1016/J.COMPAG.2017.09.031. Tong, G., Christopher, D. M., & Zhang, G. (2018). New insights on span selection for Chinese solar greenhouses using CFD analyses. Computers and Electronics in Agriculture, 149, 3–15. DOI: 10.1016/j.compag.2017.09.031. Valera, D. L., Álvarez, A. J., & Molina, F. D. (2006). Aerodynamic analysis of several insect-proof screens used in greenhouses. Spanish Journal of Agricultural Research, 4(4), 273–279. DOI: 10.5424/sjar/2006044-204. Villagrán, E.A., Gil, R., Acuña, J. F., & Bojacá, C. R. (2012). Optimization of ventilation and its effect on the microclimate of a colombian multispan greenhouse. Agronomia Colombiana, 30(2), 282-288. Villagran, E., & Bojaca, C. (2019a). CFD Simulation of the Increase of the Roof Ventilation Area in a Traditional Colombian Greenhouse: Effect on Air Flow Patterns and Thermal Behavior. International Journal of Heat and Technology, 37(3), 881-892. DOI:10.18280/ijht.370326. Villagrán, E, A., Baeza Romero, E. J., & Bojacá, C. R. (2019). Transient CFD analysis of the natural ventilation of three types of greenhouses used for agricultural production in a tropical mountain climate. Biosystems Engineering. 188, 288-304. DOI:10.1016/j.biosystemseng.2019.10.026. Villagrán, E,A., & Bojacá, C. R. (2019b). Study of natural ventilation in a Gothic multi-tunnel greenhouse designed to produce rose (Rosa spp.) in the high-Andean tropic. Ornamental Horticulture, 25(2), 133–143. DOI:10.14295/oh.v25i2.2013. Villagrán Munar, E. A., & Bojacá Aldana, C. R. (2019). Simulacion del microclima en un invernadero usado para la producción de rosas bajo condiciones de clima intertropical. Chilean Journal of Agricultural & Animal Sciences, 35(2), 137–150. DOI:10.4067/s0719-38902019005000308. Villagrán, E., Ramirez, R., Rodriguez, A., Pacheco, R. L., & Jaramillo, J. (2020). Simulation of the Thermal and Aerodynamic Behavior of an Established Screenhouse under Warm Tropical Climate Conditions: A Numerical Approach. International Journal of sustainable development and Planning, 15(4), 487-499. DOI: 10.18280/ijsdp.150409. Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf application/pdf C.I Caribia Colombia Universidad Estatal a Distancia de Costa Rica UNED Research Journal; vol. 12, Núm. 2 (2020): UNED Research Journal (Oct.);p. 1-15.