Vigilancia científica sobre procesos de gestión de información agroclimática
Los avances recientes en tecnologías como el Sistema de Observación de la Tierra, el Acceso Abierto, la Inteligencia Artificial, el Aprendizaje Automático, las Tecnologías de la Información y la Comunicación, las Plataformas de Computación en Nube y la Ciencia Ciudadana han ampliado enormemente el p...
Autores principales: | , |
---|---|
Formato: | Estudio de vigilancia |
Lenguaje: | Español |
Publicado: |
Corporación colombiana de investigación agropecuaria - AGROSAVIA
2024
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12324/39914 |
id |
RepoAGROSAVIA39914 |
---|---|
record_format |
dspace |
institution |
Corporación Colombiana de Investigación Agropecuaria |
collection |
Repositorio AGROSAVIA |
language |
Español |
topic |
Meteorología y climatología - P40 Agro climatología Ciencia Tecnología Innovación Transversal http://aims.fao.org/aos/agrovoc/c_17010 http://aims.fao.org/aos/agrovoc/c_37989 http://aims.fao.org/aos/agrovoc/c_7644 http://aims.fao.org/aos/agrovoc/c_27560 |
spellingShingle |
Meteorología y climatología - P40 Agro climatología Ciencia Tecnología Innovación Transversal http://aims.fao.org/aos/agrovoc/c_17010 http://aims.fao.org/aos/agrovoc/c_37989 http://aims.fao.org/aos/agrovoc/c_7644 http://aims.fao.org/aos/agrovoc/c_27560 Cárdenas Solano, Leidy Johanna Contreras Pedraza, Carlos Alberto Vigilancia científica sobre procesos de gestión de información agroclimática |
description |
Los avances recientes en tecnologías como el Sistema de Observación de la Tierra, el Acceso Abierto, la Inteligencia Artificial, el Aprendizaje Automático, las Tecnologías de la Información y la Comunicación, las Plataformas de Computación en Nube y la Ciencia Ciudadana han ampliado enormemente el potencial del análisis de Big Data. Estas tecnologías ofrecen herramientas más inteligentes, interoperables y útiles para la toma de decisiones en agricultura, generando información valiosa. Se están realizando esfuerzos para recopilar datos geoetiquetados e información sobre la producción agrícola a diferentes escalas, aprovechando técnicas de aprendizaje automático y datos satelitales. Además, se está integrando la digitalización con varios aspectos del agroecosistema, como la fitogenética, la diversificación de cultivos, el uso eficiente de insumos, las prácticas agronómicas, la gestión de recursos relacionados con el suelo, la tierra y las cuencas hidrográficas, la estabilidad económica, la integración de la economía y el medio ambiente, y la gestión adecuada de los servicios ecosistémicos.
Se espera que, mediante intervenciones tecnológicas y análisis de macrodatos, los agricultores puedan proteger sus cultivos de las fluctuaciones meteorológicas y las amenazas naturales, y se puedan sugerir cultivos adecuados durante períodos de barbecho o regeneración del suelo. Esto aumentaría la productividad y garantizaría una valoración sostenible del agroecosistema.
En resumen, las investigaciones sobre el uso de información agroclimática se centran en comprender los desafíos y oportunidades relacionados con el cambio climático en la agricultura, así como en implementar prácticas agrícolas sostenibles y adaptativas. Según las investigaciones publicadas en Scopus, se ha identificado que los principales países que abordan esta temática desde un punto de vista científico son India, China, Estados Unidos, Italia, Francia, Alemania, España, Australia, Irán y Brasil. A continuación, se muestra una visión general de algunas acciones destacadas que están llevando a cabo en cada país:
Cabe destacar que estos países están realizando avances significativos en la gestión de información agroclimática, pero las iniciativas y proyectos específicos pueden variar en cada caso y estar en diferentes etapas de implementación. |
format |
Estudio de vigilancia |
author |
Cárdenas Solano, Leidy Johanna Contreras Pedraza, Carlos Alberto |
author_facet |
Cárdenas Solano, Leidy Johanna Contreras Pedraza, Carlos Alberto |
author_sort |
Cárdenas Solano, Leidy Johanna |
title |
Vigilancia científica sobre procesos de gestión de información agroclimática |
title_short |
Vigilancia científica sobre procesos de gestión de información agroclimática |
title_full |
Vigilancia científica sobre procesos de gestión de información agroclimática |
title_fullStr |
Vigilancia científica sobre procesos de gestión de información agroclimática |
title_full_unstemmed |
Vigilancia científica sobre procesos de gestión de información agroclimática |
title_sort |
vigilancia científica sobre procesos de gestión de información agroclimática |
publisher |
Corporación colombiana de investigación agropecuaria - AGROSAVIA |
publishDate |
2024 |
url |
http://hdl.handle.net/20.500.12324/39914 |
work_keys_str_mv |
AT cardenassolanoleidyjohanna vigilanciacientificasobreprocesosdegestiondeinformacionagroclimatica AT contreraspedrazacarlosalberto vigilanciacientificasobreprocesosdegestiondeinformacionagroclimatica |
_version_ |
1842255629773701120 |
spelling |
RepoAGROSAVIA399142024-08-23T03:00:32Z Vigilancia científica sobre procesos de gestión de información agroclimática Cárdenas Solano, Leidy Johanna Contreras Pedraza, Carlos Alberto Meteorología y climatología - P40 Agro climatología Ciencia Tecnología Innovación Transversal http://aims.fao.org/aos/agrovoc/c_17010 http://aims.fao.org/aos/agrovoc/c_37989 http://aims.fao.org/aos/agrovoc/c_7644 http://aims.fao.org/aos/agrovoc/c_27560 Los avances recientes en tecnologías como el Sistema de Observación de la Tierra, el Acceso Abierto, la Inteligencia Artificial, el Aprendizaje Automático, las Tecnologías de la Información y la Comunicación, las Plataformas de Computación en Nube y la Ciencia Ciudadana han ampliado enormemente el potencial del análisis de Big Data. Estas tecnologías ofrecen herramientas más inteligentes, interoperables y útiles para la toma de decisiones en agricultura, generando información valiosa. Se están realizando esfuerzos para recopilar datos geoetiquetados e información sobre la producción agrícola a diferentes escalas, aprovechando técnicas de aprendizaje automático y datos satelitales. Además, se está integrando la digitalización con varios aspectos del agroecosistema, como la fitogenética, la diversificación de cultivos, el uso eficiente de insumos, las prácticas agronómicas, la gestión de recursos relacionados con el suelo, la tierra y las cuencas hidrográficas, la estabilidad económica, la integración de la economía y el medio ambiente, y la gestión adecuada de los servicios ecosistémicos. Se espera que, mediante intervenciones tecnológicas y análisis de macrodatos, los agricultores puedan proteger sus cultivos de las fluctuaciones meteorológicas y las amenazas naturales, y se puedan sugerir cultivos adecuados durante períodos de barbecho o regeneración del suelo. Esto aumentaría la productividad y garantizaría una valoración sostenible del agroecosistema. En resumen, las investigaciones sobre el uso de información agroclimática se centran en comprender los desafíos y oportunidades relacionados con el cambio climático en la agricultura, así como en implementar prácticas agrícolas sostenibles y adaptativas. Según las investigaciones publicadas en Scopus, se ha identificado que los principales países que abordan esta temática desde un punto de vista científico son India, China, Estados Unidos, Italia, Francia, Alemania, España, Australia, Irán y Brasil. A continuación, se muestra una visión general de algunas acciones destacadas que están llevando a cabo en cada país: Cabe destacar que estos países están realizando avances significativos en la gestión de información agroclimática, pero las iniciativas y proyectos específicos pueden variar en cada caso y estar en diferentes etapas de implementación. 2024-08-22T20:30:05Z 2024-08-22T20:30:05Z 2023-06 2023 Estudio de vigilancia http://hdl.handle.net/20.500.12324/39914 spa Serie Documentos de Trabajo Adnan, R. M., Liang, Z., Kuriqi, A., Kisi, O., Malik, A., Li, B., & Mortazavizadeh, F. (2021). Air temperature prediction using different machine learning models. Indonesian Journal of Electrical Engineering and Computer Science, 22(1), 534–541. https://doi.org/10.11591/IJEECS.V22.I1.PP534-541 Alhajj Ali, S., Vivaldi, G. A., Garofalo, S. Pietro, Costanza, L., & Camposeo, S. (2023). Land Suitability Analysis of Six Fruit Tree Species Immune/Resistant to Xylella fastidiosa as Alternative Crops in Infected Olive-Growing Areas. Agronomy 2023, Vol. 13, Page 547, 13(2), 547. https://doi.org/10.3390/AGRONOMY13020547 Ayele, G. T., Tebeje, A. K., Demissie, S. S., Belete, M. A., Jemberrie, M. A., Teshome, W. M., Mengistu, D. T., & Teshale, E. Z. (2018). Time series land cover mapping and change detection analysis using geographic information system and remote sensing, Northern Ethiopia. Air, Soil and Water Research, 11. https://doi.org/10.1177/1178622117751603/ASSET/IMAGES/LARGE/10.1177_1178622117751603-FIG12.JPEG Bal, S. K., Pramod, V. P., Sandeep, V. M., Manikandan, N., Sarath Chandran, M. A., Subba Rao, A. V. M., Vijaya Kumar, P., Vanaja, M., & Singh, V. K. (2023). Identifying appropriate prediction models for estimating hourly temperature over diverse agro-ecological regions of India. Scientific Reports 2023 13:1, 13(1), 1–13. https://doi.org/10.1038/s41598-023-34194-9 Bapatla, A. K., Mohanty, S. P., & Kougianos, E. (2022). sFarm: A Distributed Ledger Based Remote Crop Monitoring System for Smart Farming. IFIP Advances in Information and Communication Technology, 641 IFIP, 13–31. https://doi.org/10.1007/978-3-030-96466-5_2/COVER Behdani, M. A., Koocheki, A., Rezvani, P., & AL-Ahmadi, M. J. (2008). Agro-ecological zoning and potential yield of saffron in Khorasan-Iran. Journal of Biological Sciences, 8(2), 298–305. https://doi.org/10.3923/JBS.2008.298.305 Bellettini, M. B., Bach, F., Fabela Morón, M. F., & Bespalhok Filho, J. C. (2019). Modelo preditivo multivariado do conteúdo mineral na porção basal de pupunha utilizando dados agrometeorológicos. Semina: Ciências Agrárias, 40(6Supl3), 3383–3398. https://doi.org/10.5433/1679-0359.2019v40n6Supl3p3383 Bellucci, E., Mario Aguilar, O., Alseekh, S., Bett, K., Brezeanu, C., Cook, D., De la Rosa, L., Delledonne, M., Dostatny, D. F., Ferreira, J. J., Geffroy, V., Ghitarrini, S., Kroc, M., Kumar Agrawal, S., Logozzo, G., Marino, M., Mary-Huard, T., McClean, P., Meglič, V., … Papa, R. (2021). The INCREASE project: Intelligent Collections of food-legume genetic resources for European agrofood systems. The Plant Journal, 108(3), 646–660. https://doi.org/10.1111/TPJ.15472 Biradar, C. M., Ghosh, S., Löw, F., Singh, R., Chandna, P., Sarker, A., Sahoo, R. N., Swain, N., Choudhury, G., Agrawal, S., Rizvi, N., El-Shamaa, K., Atassi, L., Dong, J., Gaur, A., & Werry, J. (2019). GEO BIG DATA AND DIGITAL AUGMENTATION FOR ACCELERATING AGROECOLOGICAL INTENSIFICATION IN DRYLANDS. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-3-W6(3/W6), 545–548. https://doi.org/10.5194/ISPRS-ARCHIVES-XLII-3-W6-545-2019 Brouder, S. M., & Gomez-Macpherson, H. (2014). The impact of conservation agriculture on smallholder agricultural yields: A scoping review of the evidence. Agriculture, Ecosystems & Environment, 187, 11–32. https://doi.org/10.1016/J.AGEE.2013.08.010 Bruelle, G., Affholder, F., Abrell, T., Ripoche, A., Dusserre, J., Naudin, K., Tittonell, P., Rabeharisoa, L., & Scopel, E. (2017). Can conservation agriculture improve crop water availability in an erratic tropical climate producing water stress? A simple model applied to upland rice in Madagascar. Agricultural Water Management, 192, 281–293. https://doi.org/10.1016/J.AGWAT.2017.07.020 Brussaard, L., de Ruiter, P. C., & Brown, G. G. (2007). Soil biodiversity for agricultural sustainability. Agriculture, Ecosystems & Environment, 121(3), 233–244. https://doi.org/10.1016/J.AGEE.2006.12.013 Campos, J. C., Manrique-Silupú, J., Ipanaqué, W., Dorneanu, B., & Arellano-García, H. (2022). Mechanistic modelling for thrips incidence in organic banana. Computer Aided Chemical Engineering, 51, 271–276. https://doi.org/10.1016/B978-0-323-95879-0.50046-1 Centofanti, T., Hollis, J. M., Blenkinsop, S., Fowler, H. J., Truckell, I., Dubus, I. G., & Reichenberger, S. (2008). Development of agro-environmental scenarios to support pesticide risk assessment in Europe. Science of The Total Environment, 407(1), 574–588. https://doi.org/10.1016/J.SCITOTENV.2008.08.017 Chen, X., Li, X., Jiang, B., Su, J., Zheng, X., & Wang, G. (2023). Prediction of spring agricultural drought using machine learning algorithms in the southern Songnen Plain, China. Land Degradation & Development. https://doi.org/10.1002/LDR.4720 Chhogyel, N., Kumar, L., & Bajgai, Y. (2020). Spatio-temporal landscape changes and the impacts of climate change in mountainous Bhutan: A case of Punatsang Chhu Basin. Remote Sensing Applications: Society and Environment, 18, 100307. https://doi.org/10.1016/J.RSASE.2020.100307 Chiatante, G., & Meriggi, A. (2016). The Importance of Rotational Crops for Biodiversity Conservation in Mediterranean Areas. PLOS ONE, 11(2), e0149323. https://doi.org/10.1371/JOURNAL.PONE.0149323 Cohen, M., Rey, F., Ubeda, X., & Vila-Subiros, J. (2016). Landscapes and erosion in the mediterranean mountains: A comparison between France, Spain and Italy. In Landscape and Sustainable Development: The French Perspective (pp. 37–46). Taylor and Francis. https://doi.org/10.4324/9781315591360-10 Colantoni, A., Delfanti, L., Recanatesi, F., Tolli, M., & Lord, R. (2016). Land use planning for utilizing biomass residues in Tuscia Romana (central Italy): Preliminary results of a multi criteria analysis to create an agro-energy district. Land Use Policy, 50, 125–133. https://doi.org/10.1016/J.LANDUSEPOL.2015.09.012 Congalton, R. G., Oderwald, R. G., & Mead, R. A. (1983). Assessing Landsat classification accuracy using discrete multivariate analysis statistical techniques. Photogrammetric Engineering & Remote Sensing, 49(12), 1671–1678. https://www.scopus.com/record/display.uri?eid=2-s2.0-0020968740&origin=inward&txGid=44ed425a9633ce54f9c00d839bbd61d3 Contreras, D. A., Hiriart, E., Bondeau, A., Kirman, A., Guiot, J., Bernard, L., Suarez, R., & Van Der Leeuw, S. (2018). Regional paleoclimates and local consequences: Integrating GIS analysis of diachronic settlement patterns and process-based agroecosystem modeling of potential agricultural productivity in Provence (France). PLOS ONE, 13(12), e0207622. https://doi.org/10.1371/JOURNAL.PONE.0207622 Darvishi Boloorani, A., Soleimani, M., Neysani Samany, N., Bakhtiari, M., Qareqani, M., Papi, R., & Mirzaei, S. (2023). Assessment of Rural Vulnerability to Sand and Dust Storms in Iran. Atmosphere 2023, Vol. 14, Page 281, 14(2), 281. https://doi.org/10.3390/ATMOS14020281 Dasgupta, S., Debnath, S., Das, A., Biswas, A., Weindorf, D. C., Li, B., Kumar Shukla, A., Das, S., Saha, S., & Chakraborty, S. (2023a). Developing regional soil micronutrient management strategies through ensemble learning based digital soil mapping. Geoderma, 433, 116457. https://doi.org/10.1016/J.GEODERMA.2023.116457 Dasgupta, S., Debnath, S., Das, A., Biswas, A., Weindorf, D. C., Li, B., Kumar Shukla, A., Das, S., Saha, S., & Chakraborty, S. (2023b). Developing regional soil micronutrient management strategies through ensemble learning based digital soil mapping. Geoderma, 433, 116457. https://doi.org/10.1016/J.GEODERMA.2023.116457 Davis, T. J., & Schirmer, I. A. (1987). Sustainability issues in agricultural development: proceedings of the seventh agriculture sector symposium. De Pádua, G. P., De Barros França-Neto, J., Rossi, R. F., & Cândido, H. G. (2014). Agroclimatic zoning of the state of Minas Gerais for the production of high quality soybean seeds. Journal of Seed Science, 36(4), 413–418. https://doi.org/10.1590/2317-1545V36N41023 Devadas, R., Denham, R. J., & Pringle, M. (2012). SUPPORT VECTOR MACHINE CLASSIFICATION OF OBJECT-BASED DATA FOR CROP MAPPING, USING MULTI-TEMPORAL LANDSAT IMAGERY. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 185–190. http://glovis.usgs.gov/ Fernandez, C. G. T., Nestor, B. J., Danilevicz, M. F., Gill, M., Petereit, J., Bayer, P. E., Finnegan, P. M., Batley, J., & Edwards, D. (2022). Pangenomes as a Resource to Accelerate Breeding of Under-Utilised Crop Species. International Journal of Molecular Sciences 2022, Vol. 23, Page 2671, 23(5), 2671. https://doi.org/10.3390/IJMS23052671 Garnier, J., Billen, G., Vilain, G., Benoit, M., Passy, P., Tallec, G., Tournebize, J., Anglade, J., Billy, C., Mercier, B., Ansart, P., Azougui, A., Sebilo, M., & Kao, C. (2014). Curative vs. preventive management of nitrogen transfers in rural areas: Lessons from the case of the Orgeval watershed (Seine River basin, France). Journal of Environmental Management, 144, 125–134. https://doi.org/10.1016/J.JENVMAN.2014.04.030 Hakam, O., Baali, A., & Belhaj Ali, A. (2023). Modeling drought-related yield losses using new geospatial technologies and machine learning approaches: case of the Gharb plain, North-West Morocco. Modeling Earth Systems and Environment, 9(1), 647–667. https://doi.org/10.1007/S40808-022-01523-2/FIGURES/12 Hendrickx, G., Napala, A., Dao, B., Batawui, D., De Deken, R., Vermeilen, A., & Slingenbergh, J. H. W. (2007). A systematic approach to area-wide tsetse distribution and abundance maps. In Bulletin of Entomological Research (Vol. 89, Issue 3, pp. 231–244). Cambridge University Press. https://doi.org/10.1017/S0007485399000358 Hendrickx, G., Napala, A., Slingenbergh, J. H. W., Deken, R. De, & Rogers, D. J. (2001). A contribution towards simplifying area-wide tsetse surveys using medium resolution meteorological satellite data. Bulletin of Entomological Research, 91(5), 333–346. https://doi.org/10.1079/BER2001103 Hinge, G., Surampalli, R. Y., Goyal, M. K., Gupta, B. B., & Chang, X. (2021). Soil carbon and its associate resilience using big data analytics: For food Security and environmental management. Technological Forecasting and Social Change, 169, 120823. https://doi.org/10.1016/J.TECHFORE.2021.120823 Houshmandfar, A., O’Leary, G., Fitzgerald, G. J., Chen, Y., Tausz-Posch, S., Benke, K., Uddin, S., & Tausz, M. (2021). Machine learning produces higher prediction accuracy than the Jarvis-type model of climatic control on stomatal conductance in a dryland wheat agro-ecosystem. Agricultural and Forest Meteorology, 304–305, 108423. https://doi.org/10.1016/J.AGRFORMET.2021.108423 Jala, P. K., Meenal, R., Nagabushanam, P., Selvakumar, A. I., Jude Hemanth, D., & Rajasekaran, E. (2023). Machine Learning, Deep Learning Models for Agro-Meteorology Applications. ICSPC 2023 - 4th International Conference on Signal Processing and Communication, 196–200. https://doi.org/10.1109/ICSPC57692.2023.10125635 Jebari, A., Del Prado, A., Pardo, G., & Álvaro-Fuentes, J. (2023). Climate change effects on northern Spanish grassland-based dairy livestock systems. Plant and Soil, 1–20. https://doi.org/10.1007/S11104-023-05936-5/TABLES/3 Jiang, Y., Xu, X., Huang, Q., Huo, Z., & Huang, G. (2015). Assessment of irrigation performance and water productivity in irrigated areas of the middle Heihe River basin using a distributed agro-hydrological model. Agricultural Water Management, 147, 67–81. https://doi.org/10.1016/J.AGWAT.2014.08.003 Kang, S., Nair, S. S., Kline, K. L., Nichols, J. A., Wang, D., Post, W. M., Brandt, C. C., Wullschleger, S. D., Singh, N., & Wei, Y. (2014). Global simulation of bioenergy crop productivity: Analytical framework and case study for switchgrass. GCB Bioenergy, 6(1), 14–25. https://doi.org/10.1111/gcbb.12047 Kiruthika, S., & Karthika, D. (2023). IOT-BASED professional crop recommendation system using a weight-based long-term memory approach. Measurement: Sensors, 27, 100722. https://doi.org/10.1016/J.MEASEN.2023.100722 Kucharik, C. J., VanLoocke, A., Lenters, J. D., & Motew, M. M. (2013). Miscanthus Establishment and Overwintering in the Midwest USA: A Regional Modeling Study of Crop Residue Management on Critical Minimum Soil Temperatures. PLoS ONE, 8(7). https://doi.org/10.1371/journal.pone.0068847 Kuchler, P. C., Simões, M., Ferraz, R., Arvor, D., de Almeida Machado, P. L. O., Rosa, M., Gaetano, R., & Bégué, A. (2022). Monitoring Complex Integrated Crop–Livestock Systems at Regional Scale in Brazil: A Big Earth Observation Data Approach. Remote Sensing 2022, Vol. 14, Page 1648, 14(7), 1648. https://doi.org/10.3390/RS14071648 Kulmatov, R., Khasanov, S., Odilov, S., & Li, F. (2021). Assessment of the Space-Time Dynamics of Soil Salinity in Irrigated Areas Under Climate Change: a Case Study in Sirdarya Province, Uzbekistan. Water, Air, and Soil Pollution, 232(5), 1–13. https://doi.org/10.1007/S11270-021-05163-7/TABLES/2 Kunatsa, T., & Xia, X. (2022). A review on anaerobic digestion with focus on the role of biomass co-digestion, modelling and optimisation on biogas production and enhancement. Bioresource Technology, 344, 126311. https://doi.org/10.1016/J.BIORTECH.2021.126311 Lal, R. (2006). Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands. Land Degradation & Development, 17(2), 197–209. https://doi.org/10.1002/LDR.696 Li, Y., Miao, Y., Zhang, J., Cammarano, D., Li, S., Liu, X., Tian, Y., Zhu, Y., Cao, W., & Cao, Q. (2022). Improving Estimation of Winter Wheat Nitrogen Status Using Random Forest by Integrating Multi-Source Data Across Different Agro-Ecological Zones. Frontiers in Plant Science, 13, 890892. https://doi.org/10.3389/FPLS.2022.890892/BIBTEX Mariani, L., Alilla, R., Cola, G., Monte, G. D., Epifani, C., Puppi, G., & Osvaldo, F. (2013). IPHEN-a real-time network for phenological monitoring and modelling in Italy. International Journal of Biometeorology, 57(6), 881–893. https://doi.org/10.1007/S00484-012-0615-X/FIGURES/9 Marino, D., Palmieri, M., Marucci, A., Soraci, M., Barone, A., & Pili, S. (2023). Linking Flood Risk Mitigation and Food Security: An Analysis of Land-Use Change in the Metropolitan Area of Rome. Land 2023, Vol. 12, Page 366, 12(2), 366. https://doi.org/10.3390/LAND12020366 Mateo-Sanchis, A., Piles, M., Amorós-López, J., Muñoz-Marí, J., Adsuara, J. E., Moreno-Martínez, Á., & Camps-Valls, G. (2021). Learning main drivers of crop progress and failure in Europe with interpretable machine learning. International Journal of Applied Earth Observation and Geoinformation, 104, 102574. https://doi.org/10.1016/J.JAG.2021.102574 Meinke, H., Howden, S. M., Struik, P. C., Nelson, R., Rodriguez, D., & Chapman, S. C. (2009). Adaptation science for agriculture and natural resource management — urgency and theoretical basis. Current Opinion in Environmental Sustainability, 1(1), 69–76. https://doi.org/10.1016/J.COSUST.2009.07.007 Mogili, U. R., & Deepak, B. B. V. L. (2018). Review on Application of Drone Systems in Precision Agriculture. Procedia Computer Science, 133, 502–509. https://doi.org/10.1016/J.PROCS.2018.07.063 Mohammadi Kashka, F., Tahmasebi Sarvestani, Z., Pirdashti, H., Motevali, A., Nadi, M., & Valipour, M. (2023a). Sustainable Systems Engineering Using Life Cycle Assessment: Application of Artificial Intelligence for Predicting Agro-Environmental Footprint. Sustainability 2023, Vol. 15, Page 6326, 15(7), 6326. https://doi.org/10.3390/SU15076326 Mohammadi Kashka, F., Tahmasebi Sarvestani, Z., Pirdashti, H., Motevali, A., Nadi, M., & Valipour, M. (2023b). Sustainable Systems Engineering Using Life Cycle Assessment: Application of Artificial Intelligence for Predicting Agro-Environmental Footprint. Sustainability 2023, Vol. 15, Page 6326, 15(7), 6326. https://doi.org/10.3390/SU15076326 Muralidharan, C., Yoosuf, M. S., Rajkumar, Y., & Shivaprasad, D. D. (2023). Internet of Agro Drones for Precision Agriculture. Internet of Drones, 139–153. https://doi.org/10.1201/9781003252085-9/INTERNET-AGRO-DRONES-PRECISION-AGRICULTURE-MURALIDHARAN-MOHAMED-SIRAJUDEEN-YOOSUF-RAJKUMAR-SHIVAPRASAD Nabati, J., Nezami, A., Neamatollahi, E., & Akbari, M. (2020). GIS-based agro-ecological zoning for crop suitability using fuzzy inference system in semi-arid regions. Ecological Indicators, 117, 106646. https://doi.org/10.1016/J.ECOLIND.2020.106646 Nabati, J., Nezami, A., Neamatollahi, E., & Akbari, M. (2023). An integrated approach land suitability for agroecological zoning based on fuzzy inference system and GIS. Environment, Development and Sustainability, 25(3), 2316–2338. https://doi.org/10.1007/S10668-022-02127-7/TABLES/6 Naveed, M., He, H. S., Zong, S., Du, H., Satti, Z., Sun, H., & Chang, S. (2023). Cotton cultivated area detection and yield monitoring combining remote sensing with field data in lower Indus River basin, Pakistan. Environmental Monitoring and Assessment, 195(3), 1–16. https://doi.org/10.1007/S10661-023-11004-3/TABLES/3 Nayak, G., Sahu, A., Bhuyan, S. K., Akbar, A., Bhuyan, R., Kar, D., Nayak, G. C., Satapathy, S., Pattnaik, B., & Kuanar, A. (2023). Developing a computational toolbased on an artificial neural network for predicting and optimizing propolis oil, an important natural product for drug discovery. PLOS ONE, 18(5), e0283766. https://doi.org/10.1371/JOURNAL.PONE.0283766 Neamatollahi, E., Bannayan, M., Jahansuz, M. R., Struik, P., & Farid, A. (2012a). Agro-ecological zoning for wheat (Triticum aestivum), sugar beet (Beta vulgaris) and corn (Zea mays) on the Mashhad plain, Khorasan Razavi province. The Egyptian Journal of Remote Sensing and Space Science, 15(1), 99–112. https://doi.org/10.1016/J.EJRS.2012.05.002 Neamatollahi, E., Bannayan, M., Jahansuz, M. R., Struik, P., & Farid, A. (2012b). Agro-ecological zoning for wheat (Triticum aestivum), sugar beet (Beta vulgaris) and corn (Zea mays) on the Mashhad plain, Khorasan Razavi province. The Egyptian Journal of Remote Sensing and Space Science, 15(1), 99–112. https://doi.org/10.1016/J.EJRS.2012.05.002 Nguyen-Huy, T., Deo, R. C., An-Vo, D. A., Mushtaq, S., & Khan, S. (2017). Copula-statistical precipitation forecasting model in Australia’s agro-ecological zones. Agricultural Water Management, 191, 153–172. https://doi.org/10.1016/J.AGWAT.2017.06.010 Ouyang, Z., Jackson, R. B., McNicol, G., Fluet-Chouinard, E., Runkle, B. R. K., Papale, D., Knox, S. H., Cooley, S., Delwiche, K. B., Feron, S., Irvin, J. A., Malhotra, A., Muddasir, M., Sabbatini, S., Alberto, M. C. R., Cescatti, A., Chen, C. L., Dong, J., Fong, B. N., … Zhang, Y. (2023). Paddy rice methane emissions across Monsoon Asia. Remote Sensing of Environment, 284, 113335. https://doi.org/10.1016/J.RSE.2022.113335 Portugal-Pereira, J., Soria, R., Rathmann, R., Schaeffer, R., & Szklo, A. (2015). Agricultural and agro-industrial residues-to-energy: Techno-economic and environmental assessment in Brazil. Biomass and Bioenergy, 81, 521–533. https://doi.org/10.1016/J.BIOMBIOE.2015.08.010 Rahman, M. S., Pientong, C., Zafar, S., Ekalaksananan, T., Paul, R. E., Haque, U., Rocklöv, J., & Overgaard, H. J. (2021). Mapping the spatial distribution of the dengue vector Aedes aegypti and predicting its abundance in northeastern Thailand using machine-learning approach. One Health, 13. https://doi.org/10.1016/j.onehlt.2021.100358 Ranaivoson, L., Naudin, K., Ripoche, A., Affholder, F., Rabeharisoa, L., & Corbeels, M. (2017). Agro-ecological functions of crop residues under conservation agriculture. A review. Agronomy for Sustainable Development, 37(4), 26. https://doi.org/10.1007/s13593-017-0432-z Raza, A., Shoaib, M., Faiz, M. A., Baig, F., Khan, M. M., Ullah, M. K., & Zubair, M. (2020). Comparative Assessment of Reference Evapotranspiration Estimation Using Conventional Method and Machine Learning Algorithms in Four Climatic Regions. Pure and Applied Geophysics, 177(9), 4479–4508. https://doi.org/10.1007/S00024-020-02473-5/TABLES/12 Rinaldi, M., Castrignanò, A., Mastrorilli, M., Rana, G., Ventrella, D., Acutis, M., D’Urso, G., & Mattia, F. (2006). Decision Support Systems To Manage Water Resources At Irrigation District Level In Southern Italy Using Remote Sensing Information. An Integrated Project (AQUATER). AIP Conference Proceedings, 852(1), 107–114. https://doi.org/10.1063/1.2349334 Riquetti, N. B., Mello, C. R., Leandro, D., Guzman, J. A., & Beskow, S. (2022). Assessment of the soil-erosion-sediment for sustainable development of South America. Journal of Environmental Management, 321, 115933. https://doi.org/10.1016/J.JENVMAN.2022.115933 Saggi, M. K., Jain, S., Bhatia, A. S., & Sharda, R. (2022). Proposition of new ensemble data-intelligence model for evapotranspiration process simulation. Journal of Ambient Intelligence and Humanized Computing, 14(7), 8881–8897. https://doi.org/10.1007/S12652-021-03636-5/FIGURES/12 Sánchez, J., Curt, M. D., & Fernández, J. (2017). Approach to the potential production of giant reed in surplus saline lands of Spain. GCB Bioenergy, 9(1), 105–118. https://doi.org/10.1111/GCBB.12329 SARKAR, N. C., MONDAL, K., DAS, A., MUKHERJEE, A., MANDAL, S., GHOSH, S., BHATTACHARYA, B., LAWES, R., & HUDA, S. (2023). Enhancing livelihoods in farming communities through super-resolution agromet advisories using advanced digital agriculture technologies. Journal of Agrometeorology, 25(1), 68–78. https://doi.org/10.54386/JAM.V25I1.2080 Satpathi, A., Setiya, P., Das, B., Nain, A. S., Jha, P. K., Singh, S., & Singh, S. (2023). Comparative Analysis of Statistical and Machine Learning Techniques for Rice Yield Forecasting for Chhattisgarh, India. Sustainability (Switzerland), 15(3), 2786. https://doi.org/10.3390/SU15032786/S1 Sciuto, L., Licciardello, F., Barbera, A. C., & Cirelli, G. (2022). A GIS‐based multicriteria decision analysis to reduce riparian vegetation hydrogeological risk and to quantify harvested biomass (Giant reed) for energetic retrieval. Ecological Indicators, 144, 109548. https://doi.org/10.1016/J.ECOLIND.2022.109548 Scopel, E., Triomphe, B., Affholder, F., Da Silva, F. A. M. E., Corbeels, M., Xavier, J. H. V., Lahmar, R., Recous, S., Bernoux, M., Blanchart, E., De Carvalho Mendes, I., & De Tourdonnet, S. (2013). Conservation agriculture cropping systems in temperate and tropical conditions, performances and impacts. A review. Agronomy for Sustainable Development, 33(1), 113–130. https://doi.org/10.1007/S13593-012-0106-9/METRICS Senanayake, S., Pradhan, B., Alamri, A., & Park, H. J. (2022). A new application of deep neural network (LSTM) and RUSLE models in soil erosion prediction. Science of The Total Environment, 845, 157220. https://doi.org/10.1016/J.SCITOTENV.2022.157220 Shiri, J., Kim, S., & Kisi, O. (2014). Estimation of daily dew point temperature using genetic programming and neural networks approaches. Hydrology Research, 45(2), 165–181. https://doi.org/10.2166/NH.2013.229 Surendra, K. C., Angelidaki, I., & Khanal, S. K. (2022). Bioconversion of waste-to-resources (BWR-2021): Valorization of industrial and agro-wastes to fuel, feed, fertilizer, and biobased products. Bioresource Technology, 347, 126739. https://doi.org/10.1016/J.BIORTECH.2022.126739 Taghizadeh-Mehrjardi, R., Schmidt, K., Toomanian, N., Heung, B., Behrens, T., Mosavi, A., S. Band, S., Amirian-Chakan, A., Fathabadi, A., & Scholten, T. (2021). Improving the spatial prediction of soil salinity in arid regions using wavelet transformation and support vector regression models. Geoderma, 383, 114793. https://doi.org/10.1016/J.GEODERMA.2020.114793 Timsina, J., Dutta, S., Devkota, K. P., Chakraborty, S., Neupane, R. K., Bishta, S., Amgain, L. P., Singh, V. K., Islam, S., & Majumdar, K. (2021). Improved nutrient management in cereals using Nutrient Expert and machine learning tools: Productivity, profitability and nutrient use efficiency. Agricultural Systems, 192, 103181. https://doi.org/10.1016/J.AGSY.2021.103181 Valle Júnior, L. C. G., Ventura, T. M., Souza, R. S. R., de S. Nogueira, J., de A. Lobo, F., Vourlitis, G. L., & Rodrigues, T. R. (2020). Comparative assessment of modelled and empirical reference evapotranspiration methods for a brazilian savanna. Agricultural Water Management, 232, 106040. https://doi.org/10.1016/J.AGWAT.2020.106040 Viscarra Rossel, R. A., Behrens, T., Ben-Dor, E., Brown, D. J., Demattê, J. A. M., Shepherd, K. D., Shi, Z., Stenberg, B., Stevens, A., Adamchuk, V., Aïchi, H., Barthès, B. G., Bartholomeus, H. M., Bayer, A. D., Bernoux, M., Böttcher, K., Brodský, L., Du, C. W., Chappell, A., … Ji, W. (2016). A global spectral library to characterize the world’s soil. Earth-Science Reviews, 155, 198–230. https://doi.org/10.1016/J.EARSCIREV.2016.01.012 Wang, E., Attard, S., Linton, A., McGlinchey, M., Xiang, W., Philippa, B., & Everingham, Y. (2020). Development of a closed-loop irrigation system for sugarcane farms using the Internet of Things. Computers and Electronics in Agriculture, 172, 105376. https://doi.org/10.1016/J.COMPAG.2020.105376 Xu, X., Ouyang, X., Gu, Y., Cheng, K., Smith, P., Sun, J., Li, Y., & Pan, G. (2021). Climate change may interact with nitrogen fertilizer management leading to different ammonia loss in China’s croplands. Global Change Biology, 27(24), 6525–6535. https://doi.org/10.1111/GCB.15874 Yamada, E. S. M., & Sentelhas, P. C. (2014). Agro-climatic zoning of Jatropha curcas as a subside for crop planning and implementation in Brazil. International Journal of Biometeorology, 58(9), 1995–2010. https://doi.org/10.1007/S00484-014-0803-Y/TABLES/6 Yan, X., Yagi, K., Akiyama, H., & Akimoto, H. (2005). Statistical analysis of the major variables controlling methane emission from rice fields. Global Change Biology, 11(7), 1131–1141. https://doi.org/10.1111/J.1365-2486.2005.00976.X Zhang, G., Xiao, X., Biradar, C. M., Dong, J., Qin, Y., Menarguez, M. A., Zhou, Y., Zhang, Y., Jin, C., Wang, J., Doughty, R. B., Ding, M., & Moore, B. (2017). Spatiotemporal patterns of paddy rice croplands in China and India from 2000 to 2015. Science of The Total Environment, 579, 82–92. https://doi.org/10.1016/J.SCITOTENV.2016.10.223 Zhang, J. ;, Liu, Y., Yang, H., Li, Z., Huang, C., Yin, D., Zhang, J., & Liu, Y. (2022). Agronomic Improvements, Not Climate, Underpin Recent Rice Yield Gains in Changing Environments. Agronomy 2022, Vol. 12, Page 2071, 12(9), 2071. https://doi.org/10.3390/AGRONOMY12092071 Zhou, D., Khan, S., Abbas, A., Rana, T., Zhang, H., & Chen, Y. (2009). Climatic regionalization mapping of the Murrumbidgee Irrigation Area, Australia. Progress in Natural Science, 19(12), 1773–1779. https://doi.org/10.1016/J.PNSC.2009.07.007 Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ https://co.creativecommons.org/?page_id=13 1-67 application/pdf application/pdf C.I Tibaitatá Colombia Corporación colombiana de investigación agropecuaria - AGROSAVIA |