In vitro methane production from silages based on Cenchrus purpureus mixed with Tithonia diversifolia in different proportions

Climate change (CC) affects food production, mainly those based on livestock systems. Producers must identify adaptation strategies to ensure the production, during periods of drought, and lack of forage. Besides contributing to CC, high emissions of ruminal methane (CH4) are energy loss potentially...

Full description

Bibliographic Details
Main Authors: Huertas González, María Alexandra, Mayorga Mogollón, Olga Lucía, García Saavedra, Yuri Marcela, Holguín Castaño, Vilma Amparo, Mora Delgado, Jairo
Format: article
Language:Inglés
Published: Editora da Universidade Estadual de Maringá - EDUEM 2024
Subjects:
Online Access:https://www.scielo.br/j/asas/a/3KsHf3nYHDLyf3V9GCK3n9G/
http://hdl.handle.net/20.500.12324/39668
https://doi.org/10.4025/actascianimsci.v43i1.51322
id RepoAGROSAVIA39668
record_format dspace
institution Corporación Colombiana de Investigación Agropecuaria
collection Repositorio AGROSAVIA
language Inglés
topic Digestibility
Greenhouse gasses
Small ruminants
Silvi-pastures
Investigación agropecuaria - A50
Metano
Producción
Tithonia
Transversal
http://aims.fao.org/aos/agrovoc/c_4784
http://aims.fao.org/aos/agrovoc/c_6200
http://aims.fao.org/aos/agrovoc/c_32257
spellingShingle Digestibility
Greenhouse gasses
Small ruminants
Silvi-pastures
Investigación agropecuaria - A50
Metano
Producción
Tithonia
Transversal
http://aims.fao.org/aos/agrovoc/c_4784
http://aims.fao.org/aos/agrovoc/c_6200
http://aims.fao.org/aos/agrovoc/c_32257
Huertas González, María Alexandra
Mayorga Mogollón, Olga Lucía
García Saavedra, Yuri Marcela
Holguín Castaño, Vilma Amparo
Mora Delgado, Jairo
In vitro methane production from silages based on Cenchrus purpureus mixed with Tithonia diversifolia in different proportions
description Climate change (CC) affects food production, mainly those based on livestock systems. Producers must identify adaptation strategies to ensure the production, during periods of drought, and lack of forage. Besides contributing to CC, high emissions of ruminal methane (CH4) are energy loss potentially usable for livestock production. The objective was to estimate in vitro ruminal gas production (RGP) and determine the CH4 emissions from silages. Treatments were made with forage of Cenchrus purpureus mixed with Tithonia diversifolia T1= C.purpureus at 100%; T2= C.purpureus/ T.diversifolia in 33/67 percent ratio; T3= C.purpureus/ T.diversifolia 67/33; and T4= T.diversifolia at 100%. Samples of silages were analyzed, and they were inoculated with strains of Lactobacillus paracasei (T735); then they were fermented in vacuum-sealed bags for 67 days. RGP and CH4 were measured at 2, 4, 8, 12, 18, 24, 30, 36, and 48 hours. Additionally, modeling of CH4 production kinetics was conducted, using different equations. The results indicate that the highest cumulative CH4 production was for T1. This kinetics was represented using the Gompertz model. In conclusion, the inclusion of T.diversifolia to C.purpureus silages contributes to the decrease of methane at the ruminal level, which constitutes an adaptation practice at climate change.
format article
author Huertas González, María Alexandra
Mayorga Mogollón, Olga Lucía
García Saavedra, Yuri Marcela
Holguín Castaño, Vilma Amparo
Mora Delgado, Jairo
author_facet Huertas González, María Alexandra
Mayorga Mogollón, Olga Lucía
García Saavedra, Yuri Marcela
Holguín Castaño, Vilma Amparo
Mora Delgado, Jairo
author_sort Huertas González, María Alexandra
title In vitro methane production from silages based on Cenchrus purpureus mixed with Tithonia diversifolia in different proportions
title_short In vitro methane production from silages based on Cenchrus purpureus mixed with Tithonia diversifolia in different proportions
title_full In vitro methane production from silages based on Cenchrus purpureus mixed with Tithonia diversifolia in different proportions
title_fullStr In vitro methane production from silages based on Cenchrus purpureus mixed with Tithonia diversifolia in different proportions
title_full_unstemmed In vitro methane production from silages based on Cenchrus purpureus mixed with Tithonia diversifolia in different proportions
title_sort in vitro methane production from silages based on cenchrus purpureus mixed with tithonia diversifolia in different proportions
publisher Editora da Universidade Estadual de Maringá - EDUEM
publishDate 2024
url https://www.scielo.br/j/asas/a/3KsHf3nYHDLyf3V9GCK3n9G/
http://hdl.handle.net/20.500.12324/39668
https://doi.org/10.4025/actascianimsci.v43i1.51322
work_keys_str_mv AT huertasgonzalezmariaalexandra invitromethaneproductionfromsilagesbasedoncenchruspurpureusmixedwithtithoniadiversifoliaindifferentproportions
AT mayorgamogollonolgalucia invitromethaneproductionfromsilagesbasedoncenchruspurpureusmixedwithtithoniadiversifoliaindifferentproportions
AT garciasaavedrayurimarcela invitromethaneproductionfromsilagesbasedoncenchruspurpureusmixedwithtithoniadiversifoliaindifferentproportions
AT holguincastanovilmaamparo invitromethaneproductionfromsilagesbasedoncenchruspurpureusmixedwithtithoniadiversifoliaindifferentproportions
AT moradelgadojairo invitromethaneproductionfromsilagesbasedoncenchruspurpureusmixedwithtithoniadiversifoliaindifferentproportions
_version_ 1808107902957780992
spelling RepoAGROSAVIA396682024-07-27T03:02:28Z In vitro methane production from silages based on Cenchrus purpureus mixed with Tithonia diversifolia in different proportions In vitro methane production from silages based on Cenchrus purpureus mixed with Tithonia diversifolia in different proportions Huertas González, María Alexandra Mayorga Mogollón, Olga Lucía García Saavedra, Yuri Marcela Holguín Castaño, Vilma Amparo Mora Delgado, Jairo Digestibility Greenhouse gasses Small ruminants Silvi-pastures Investigación agropecuaria - A50 Metano Producción Tithonia Transversal http://aims.fao.org/aos/agrovoc/c_4784 http://aims.fao.org/aos/agrovoc/c_6200 http://aims.fao.org/aos/agrovoc/c_32257 Climate change (CC) affects food production, mainly those based on livestock systems. Producers must identify adaptation strategies to ensure the production, during periods of drought, and lack of forage. Besides contributing to CC, high emissions of ruminal methane (CH4) are energy loss potentially usable for livestock production. The objective was to estimate in vitro ruminal gas production (RGP) and determine the CH4 emissions from silages. Treatments were made with forage of Cenchrus purpureus mixed with Tithonia diversifolia T1= C.purpureus at 100%; T2= C.purpureus/ T.diversifolia in 33/67 percent ratio; T3= C.purpureus/ T.diversifolia 67/33; and T4= T.diversifolia at 100%. Samples of silages were analyzed, and they were inoculated with strains of Lactobacillus paracasei (T735); then they were fermented in vacuum-sealed bags for 67 days. RGP and CH4 were measured at 2, 4, 8, 12, 18, 24, 30, 36, and 48 hours. Additionally, modeling of CH4 production kinetics was conducted, using different equations. The results indicate that the highest cumulative CH4 production was for T1. This kinetics was represented using the Gompertz model. In conclusion, the inclusion of T.diversifolia to C.purpureus silages contributes to the decrease of methane at the ruminal level, which constitutes an adaptation practice at climate change. Universidad del Tolima - UT 2024-07-26T20:04:49Z 2024-07-26T20:04:49Z 2020-11-30 2020 article Artículo científico http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 https://www.scielo.br/j/asas/a/3KsHf3nYHDLyf3V9GCK3n9G/ 1807-8672 http://hdl.handle.net/20.500.12324/39668 https://doi.org/10.4025/actascianimsci.v43i1.51322 reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA eng Acta Scientiarum. Animal Sciences 43 1 11 Association of Official Analytical Chemists [AOAC]. (1990). Official Methods of Analysis (15th ed.). Arlington, VA: AOAC. Barbosa, A. L., Voltolini, T. V., Menezes, D. R., Moraes, S. A., Nascimento, J. C. S., & Rodrigues, R. T. S. (2018). Intake, digestibility, growth performance, and enteric methane emission of Brazilian semiarid non-descript breed goats fed diets with different forage to concentrate ratios. Tropical Animal Health and Production, 50(2), 283-289. doi: 10.1007/s11250-017-1427-0 Bettencourt, E. M. V., Tilman, M., Narciso, V., Carvalho, M. L. D. S., & Henriques, P. D. D. S. (2015). The livestock roles in the wellbeing of rural communities of Timor-Leste. Revista de Economia e Sociologia Rural, 53(1), 63-80. doi: 10.1590/1234-56781806-94790053s01005 Cárdenas, J. A. B., & Flores, C. L. (2012). Emisión de metano entérico por rumiantes y su contribución al calentamiento global y al cambio climático. Revisión. Revista Mexicana de Ciencias Pecuarias, 3(2), 215-246. Recovered from https://www.researchgate.net/publication/236158591_Emision_de_metano_enterico_por_rumiantes_y_su_contribucion_al_calentamiento_global_y_al_cambio_climatico_Revision Castaño, V. H., Grisalez, S. O., Navia, A. V., & Delgado, J. R. M. (2015). Evaluación multicriterio de 44 introducciones de Tithonia diversifolia (hemsl.) Gray en Candelaria, Valle del Cauca. Revista de la Facultad de Medicina Veterinaria y de Zootecnia, 62(2), 57-72. doi: 10.15446/rfmvz.v62n2.5199 Delgado, D. C., Galindo, J., González, R., González, N., Scull, I., & Dihigo, L. (2012) Feeding of tropical trees and shrub foliages as a strategy to reduce ruminal methanogenesis: studies conducted in Cuba. Tropical Animal Health and Production, 44, 1097-1104. doi: 10.1007/s11250-011-0045-5 Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M., & Robledo, C. W. (2008). InfoStat, versión 2008. Córdoba, AG: Grupo InfoStat, FCA, Universidad Nacional de Córdoba. Donney’s, G., Molina, I. C., Rivera, J. E., Villegas, G., Chará, J., & Barahona, R. (2015). Producción in vitro de metano de dietas ofrecidas en sistemas silvopastoriles intensivos con Tithonia diversifolia y sistemas tradicionales. In 3 Congreso Nacional de Sistemas Silvopastoriles y VIII Congreso Internacional de Sistemas Agroforestales INTA (p. 7-9). Puerto Iguazú, Argentina. Florez Delgado, D. F., Capacho Mogollon, A. E., Quintero Muino, S. M., & Gamboa Vera, K. Y. (2018). Effect of supplementation with orange silage on the caprine milk quality. Revista U.D.C.A Actualidad & Divulgación Científica, 21(2), 501-506. doi: 10.31910/rudca.v21.n2.2018.982 Forero-Álvarez, J. (2013). The economy of family farming production. Cuadernos de Desarrollo Rural, 10(spe70), 27-45. Recovered from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0122-14502013000100002 France, J., Dijkstra, J., Dhanoa, M. S., Lopez, S., & Bannink, A. (2000). Estimating the extent of degradation of ruminant feeds from a description of their gas production profiles observed in vitro: derivation of models and other mathematical considerations. British Journal of Nutrition, 83(2), 143-150. doi : https://doi.org/10.1017/S0007114500000180 Freire, J. M., Silva, A. M. D. A., Carneiro, H., Pereira Filho, J. M., Rocha, L. B., & Bidler, D. C. (2017). In vitro degradation and gas production of brachiaria grass with levels of biodiesel byproducts. Acta Scientiarum. Animal Sciences, 39(2), 175-179. doi: 10.4025/actascianimsci.v39i2.32832 Friedrich, T. (2014). Producción de alimentos de origen animal. Actualidad y perspectivas. Revista Cubana de Ciencia Agrícola, 48(1), 5-6. Recovered from https://www.redalyc.org/pdf/1930/193030122003.pdf Galina, M. A., Ortiz-Rubio, M. A., Mondragón, F., Delgado-Pertíñez, M., & Elías, A. (2009). Rendimiento de terneros alimentados con silo de maíz o láctico con un promotor de la fermentación ruminal. Archivos de Zootecnia, 58(223), 383-393. Recovered from https://www.redalyc.org/pdf/495/49515090007.pdf Galindo, J., Gonzáluez, N., Sosa, A., Ruíz, T., Torres, V., Aldana, A. I., ... Noda, A. C. (2011). Efecto de Tithonia diversifolia (Hemsl.) Gray (Botón de oro) en la población de protozoos y metanógenos ruminales en condiciones in vitro. Revista Cubana de Ciencia Agrícola, 45(1), 33-37. Recovered from https://www.semanticscholar.org/paper/Efecto-de-Tithonia-diversifolia-%28Hemsl.%29-Gray-de-en-Galindo-Gonz%C3%A1lez/b147f9ba2a5edc5566028c62b89bbac97fb7fdf9?p2df Holdridge, L. R. (1987). Ecología basada en zonas de vida (n. 83). San José, CR: Instituto Interamericano de Ciencias Agricoles. Holguín, V. A., Ortíz Grisalez, S., Velasco Navia, A., & Mora-Delgado, J. (2015). Multi-criteria evaluation of 44 introductions of Tithonia diversifolia (Hemsl.) A. Gray in Candelaria, Valle del Cauca. Revista de la Facultad de Medicina Veterinaria y de Zootecnia, 62(2), 57-72. doi: 10.15446/rfmvz.v62n2.5199 Holguín, V., Grisalez, S. O., Huertas, A., Fandiño, L. C., & Delgado, J. R. M. (2018). Ganancia de peso en ovinos alimentados con un ensilaje de Pennisetum purpureun y Tithonia diversifolia. RIAA, 9(2), 1. Recovered from https://dialnet.unirioja.es/servlet/articulo?codigo=6535138 Horwitz, W., Latimer, G. W., & AOAC International. (2010). Official methods of analysis of AOAC International. Gaithersburg, MD: AOAC International. Hurst, P., Termine, P., & Karl, M. (2007). Agricultural workers and their contribution to sustainable agriculture and rural development. Geneve, CH: FAO. Recovered from http://www.fao.org/3/a-bp976e.pdf Kulivand, M., & Kafilzadeh, F. (2015). Correlation between chemical composition, kinetics of fermentation and methane production of eight pasture grasses. Acta Scientiarum. Animal Sciences,37(1), 9-14. doi: 10.4025/actascianimsci.v37i1.24336 La, O., Valenciaga, D., Gonzalez, H., Orozco, A., Castillo, Y., Ruiz, O., ... Arzola, C. (2009). Effect of the combination of Tithonia diversifolia with Pennisetum purpureum cv. Cuba CT-115 on the in vitro gas kinetics and production. Cuban Journal of Agricultural Science, 43(2), 143-146. Recovered from https://www.researchgate.net/publication/292840960_Effect_of_the_combination_of_Tithonia_diversifolia_with_Pennisetum_purpureum_cv_Cuba_CT-115_on_the_in_vitro_gas_kinetics_and_production La O, O., González, H., Orozco, A., Castillo, Y., Ruiz, O., Estrada, A., & Castro, B. I. (2012). Composición química, degradabilidad ruminal in situ y digestibilidad in vitro de ecotipos de Tithonia diversifolia de interés para la alimentación de rumiantes. Revista Cubana de Ciencia Agrícola, 46(1), 47-53. Mahecha, L., Escobar, J. P., Suárez, J. F., & Restrepo, L. F. (2007). Tithonia diversifolia (hemsl.) Gray (botón de oro) como suplemento forrajero de vacas F1 (Holstein por Cebú). Livestock Research for Rural Development, 19(2), 1-6. Recovered from http://www.lrrd.org/lrrd19/2/mahe19016.htm Mahecha-Ledesma, L., Angulo-Arizala, J., & Barragán-Hernández, W. (2017). Calidad nutricional, dinámica fermentativa y producción de metano de arreglos silvopastoriles. Agronomía Mesoamericana, 28(2), 371-387. doi: 10.15517/ma.v28i2.22750 Maluf, R. S., Burlandy, L., Santarelli, M., Schottz, V., & Speranza, J. S. (2015). Nutrition-sensitive agriculture and the promotion of food and nutrition sovereignty and security in Brazil. Ciência & Saúde Coletiva, 20(8), 2303-2312. doi: 10.1590/1413-81232015208.14032014 Meza, G. A., Loor, N. J., Sánchez, A. R., Avellaneda, J. H., Meza, C. J., Vera, D. F., ... López, F. X. (2014). Inclusión de harinas de follajes arbóreos y arbustivos tropicales (Morus alba, Erythrina poeppigiana, Tithonia diversifolia e Hibiscus rosa-sinensis) en la alimentación de cuyes (Cavia porcellus Linnaeus). Revista de la Facultad de Medicina Veterinaria y de Zootecnia, 61(3), 258-269. Recovered from http://www.scielo.org.co/pdf/rfmvz/v61n3/v61n3a05.pdf Miguel, M. F., Delagarde, R., & Ribeiro-Filho, H. M. N. (2019). Corn silage supplementation for dairy cows grazing annual ryegrass at two pasture allowances. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 71(3), 1037-1046. doi: 10.1590/1678-4162-9795 Molina Botero, I. C., Cantet, J. M., Montoya, S., Correa Londoño, G. A., & Barahona Rosales, R. (2013). In vitro methane production from two tropical grasses alone or in combination with Leucaena leucocephala or Gliricidia sepium. CES Medicina Veterinaria y Zootecnia, 8(2), 15-31. Recovered from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1900-96072013000200002 Moreira, L. M., Leonel, F. D. P., Vieira, R. A. M., & Pereira, J. C. (2013). A new approach about the digestion of fibers by ruminants. Revista Brasileira de Saúde e Produção Animal,14(2), 382-395. doi: 10.1590/S1519-99402013000200008 Naranjo, J. F., & Cuartas, C. A. (2011). Caracterización nutricional y de la cinética de degradación ruminal de algunos de los recursos forrajeros con potencial para la suplementación de rumiantes en el trópico alto de Colombia. Revista CES Medicina Veterinaria y Zootecnia, 6(1), 9-19. Recovered from https://dialnet.unirioja.es/servlet/articulo;jsessionid=ECA2D78337903C8AD48A2D75E69BBA2E.dialnet01?codigo=3697941 Noguera, R. R., Saliba, E. O., & Mauricio, R. M. (2004). Comparación de modelos matemáticos para estimar los parámetros de degradación obtenidos a través de la técnica de producción de gas. Livestock Research for Rural Development, 16(11). Recovered from https://www.lrrd.org/lrrd16/11/nogu16086.htm Olivo, M. L, & Soto-Olivo, A. (2010). Comportamiento de los gases de efecto invernadero y las temperaturas atmosféricas con sus escenarios de incremento potencial. Universidad, Ciencia y Tecnología, 14(57), 221-230. Recovered from http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1316-48212010000400002 Plata Pérez, L., González Ramírez, P. I., & Calderón Sánchez, E. (2017). La función de crecimiento de Richard y los modelos de crecimiento neoclásicos. EconoQuantum, 14(1), 99-118. doi: 10.18381/eq.v14i1.6543 Posada, S. L., Solano, R. N., & Vergara, D. M. B. (2006). Relación entre presión y volumen para la implementación de la técnica in vitro de producción de gases en Medellín, Colombia. Revista Colombiana de Ciencias Pecuarias, 19(4), 407-414. Recovered from https://dialnet.unirioja.es/servlet/articulo? codigo=3239461 Ribeiro, R. S., Terry, S. A., Sacramento, J. P., Silveira, S. R., Bento, C. B., Silva, E. F., … Chaves, A. V. (2016). Tithonia diversifolia as a Supplementary Feed for Dairy Cows. PloS one, 11(12), e0165751. doi: 10.1371/journal.pone.0165751 Rivera, J. E., Naranjo, J. F., Cuartas, C. A., & Arenas, F. A. (2013). Fermentación in vitro y composición química de algunos forrajes y dietas ofrecidas bajo un Sistema Silvopastoril en el trópico de altura. Livestock Research for Rural Development, 25(10), 1-12. Recovered from https://www.researchgate.net/profile/Julian_Rivera2/publication/287056357_In_vitro_fermentation_and_chemical_composition_of_some_forages_and_diets_offered_to_cattle_in_a_tropical_Silvopastoral_System/links/56caed1308ae96cdd06f6a61.pdf Rivera, J. E., Molina, I. C., Donneys, G., Villegas, G., Chará, J., & Barahona, R. (2015). Dinámicas de fermentación y producción in vitro de metano en dietas de sistemas silvopastoriles intensivos con L. leucocephala y sistemas convencionales orientados a la producción de leche. Livestock Research for Rural Development, 27(4), 1-15. Recovered from https://www.researchgate.net/publication/274314837_ Dinamica_de_fermentacion_y_produccion_de_metano_en_dietas_de_sistemas_silvopastoriles_intensivos_con_L_leucocephala_y_sistemas_convencionales_orientados_a_la_produccion_de_leche Rojas-Downing, M., Nejadhashemi, A. P., Harrigan, T., & Woznicki, S. A. (2017). Climate change and livestock: impacts, adaptation, and mitigation. Climate Risk Management, 16, 145-163. doi: 10.1016/j.crm.2017.02.001 Rosegrant, M. W., Fernandez, M., & Sinha, A. (2009). Looking into the future for agriculture and AKST. In B. D. McIntyre, H. R. Herren, J. Wakhungu, R. T. Watson (Eds.), International Assessment of Agricultural Knowledge, Science and Technology for Development (IAASTD). Agriculture at a crossroads (p. 307-376). Washington, DC: Island Press. Schofield, P., Pitt, R. E., & Pell, A. N. (1994). Kinetics of fiber digestion from in vitro gas production. Journal of Animal Science, 72(11), 2980-2991. doi: 10.2527/1994.72112980x Steinfed, H., Gerber, P., Wassenaar, T., Castel, V., Rosales, M., & De Haan, C. (2006). Livestock´s long shadow: environmental issues and options. Rome, IT: FAO. Terry, S. A., Ribeiro, R. S., Freitas, D. S., Delarota, G. D., Pereira, L. G. R., & Tomich, T. R. … Chaves, A. V. (2016). Effects of Tithonia diversifolia on in vitro methane production and ruminal fermentation characteristics. Animal Production Science, 56(3), 437-441. doi: 10.1071/AN15560 Theodorou, M. K., Williams, B. A., Dhanoa, M. S., McAllan, A. B., & France, J. (1994). A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology, 48(3-4), 185-197. doi: 10.1016/0377-8401(94)90171-6 Van Soest, P. V., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597. doi: 10.3168/jds.S0022-0302(91)78551-2 Verdecia, D. M., Ramírez, J. L., Leonard, I., Álvarez, Y., Bazán, Y., Bodas, R., & López, S. (2011). Calidad de la Tithonia diversifolia en una zona del Valle del Cauto. REDVET. Revista electrónica de Veterinaria, 12(5), 1-13. (ID 63622168004) Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf application/pdf Colombia Editora da Universidade Estadual de Maringá - EDUEM São Paulo/SP (Brasil) Acta Scientiarum. Animal Sciences; Vol. 43, (2020): Acta Scientiarum. Animal Sciences (Nov);p.1-11