Odorant receptor phylogeny confirms conserved channels for sex pheromone and host plant signals in tortricid moths
The search for mates and food is mediated by volatile chemicals. Insects sense food odorants and sex pheromones through odorant receptors (ORs) and pheromone receptors (PRs), which are expressed in olfactory sensory neurons. Molecular phylogenetics of ORs, informed by behavioral and functional data,...
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | Inglés |
Publicado: |
Wiley
2024
|
Materias: | |
Acceso en línea: | https://onlinelibrary.wiley.com/doi/abs/10.1002/ece3.6458 http://hdl.handle.net/20.500.12324/39625 https://doi.org/10.1002/ece3.6458 |
id |
RepoAGROSAVIA39625 |
---|---|
record_format |
dspace |
institution |
Corporación Colombiana de Investigación Agropecuaria |
collection |
Repositorio AGROSAVIA |
language |
Inglés |
topic |
Genética y mejoramiento animal - L10 Plodia interpunctella Lepidoptera Sustancia química Insecto Transversal http://aims.fao.org/aos/agrovoc/c_30328 http://aims.fao.org/aos/agrovoc/c_4268 http://aims.fao.org/aos/agrovoc/c_49872 http://aims.fao.org/aos/agrovoc/c_8dcb26c2 |
spellingShingle |
Genética y mejoramiento animal - L10 Plodia interpunctella Lepidoptera Sustancia química Insecto Transversal http://aims.fao.org/aos/agrovoc/c_30328 http://aims.fao.org/aos/agrovoc/c_4268 http://aims.fao.org/aos/agrovoc/c_49872 http://aims.fao.org/aos/agrovoc/c_8dcb26c2 Gonzalez, Francisco Borrero Echeverry, Felipe Jósvai, Júlia K Strandh, Maria Unelius, C. Rikard Tóth, Miklós Witzgall, Peter Bengtsson, Marie Walker, William B. Odorant receptor phylogeny confirms conserved channels for sex pheromone and host plant signals in tortricid moths |
description |
The search for mates and food is mediated by volatile chemicals. Insects sense food odorants and sex pheromones through odorant receptors (ORs) and pheromone receptors (PRs), which are expressed in olfactory sensory neurons. Molecular phylogenetics of ORs, informed by behavioral and functional data, generates sound hypotheses for the identification of semiochemicals driving olfactory behavior. Studying orthologous receptors and their ligands across taxa affords insights into the role of chemical communication in reproductive isolation and phylogenetic divergence. The female sex pheromone of green budworm moth Hedya nubiferana (Lepidoptera, Totricidae) is a blend of two unsaturated acetates, only a blend of both elicits male attraction. Females produce in addition codlemone, which is the sex pheromone of another tortricid, codling moth Cydia pomonella. Codlemone also attracts green budworm moth males. Concomitantly, green budworm and codling moth males are attracted to the host plant volatile pear ester. A congruent behavioral response to the same pheromone and plant volatile in two tortricid species suggests co-occurrence of dedicated olfactory channels. In codling moth, one PR is tuned to both compounds, the sex pheromone codlemone and the plant volatile pear ester. Our phylogenetic analysis finds that green budworm moth expresses an orthologous PR gene. Shared ancestry, and high levels of amino acid identity and sequence similarity, in codling and green budworm moth PRs offer an explanation for parallel attraction of both species to the same compounds. A conserved olfactory channel for a sex pheromone and a host plant volatile substantiates the alliance of social and habitat signals in insect chemical communication. Field attraction assays confirm that in silico investigations of ORs afford powerful predictions for an efficient identification of behavior-modifying semiochemicals, for an improved understanding of the mechanisms of host plant attraction in insect herbivores and for the further development of sustainable insect control. |
format |
article |
author |
Gonzalez, Francisco Borrero Echeverry, Felipe Jósvai, Júlia K Strandh, Maria Unelius, C. Rikard Tóth, Miklós Witzgall, Peter Bengtsson, Marie Walker, William B. |
author_facet |
Gonzalez, Francisco Borrero Echeverry, Felipe Jósvai, Júlia K Strandh, Maria Unelius, C. Rikard Tóth, Miklós Witzgall, Peter Bengtsson, Marie Walker, William B. |
author_sort |
Gonzalez, Francisco |
title |
Odorant receptor phylogeny confirms conserved channels for sex pheromone and host plant signals in tortricid moths |
title_short |
Odorant receptor phylogeny confirms conserved channels for sex pheromone and host plant signals in tortricid moths |
title_full |
Odorant receptor phylogeny confirms conserved channels for sex pheromone and host plant signals in tortricid moths |
title_fullStr |
Odorant receptor phylogeny confirms conserved channels for sex pheromone and host plant signals in tortricid moths |
title_full_unstemmed |
Odorant receptor phylogeny confirms conserved channels for sex pheromone and host plant signals in tortricid moths |
title_sort |
odorant receptor phylogeny confirms conserved channels for sex pheromone and host plant signals in tortricid moths |
publisher |
Wiley |
publishDate |
2024 |
url |
https://onlinelibrary.wiley.com/doi/abs/10.1002/ece3.6458 http://hdl.handle.net/20.500.12324/39625 https://doi.org/10.1002/ece3.6458 |
work_keys_str_mv |
AT gonzalezfrancisco odorantreceptorphylogenyconfirmsconservedchannelsforsexpheromoneandhostplantsignalsintortricidmoths AT borreroecheverryfelipe odorantreceptorphylogenyconfirmsconservedchannelsforsexpheromoneandhostplantsignalsintortricidmoths AT josvaijuliak odorantreceptorphylogenyconfirmsconservedchannelsforsexpheromoneandhostplantsignalsintortricidmoths AT strandhmaria odorantreceptorphylogenyconfirmsconservedchannelsforsexpheromoneandhostplantsignalsintortricidmoths AT uneliuscrikard odorantreceptorphylogenyconfirmsconservedchannelsforsexpheromoneandhostplantsignalsintortricidmoths AT tothmiklos odorantreceptorphylogenyconfirmsconservedchannelsforsexpheromoneandhostplantsignalsintortricidmoths AT witzgallpeter odorantreceptorphylogenyconfirmsconservedchannelsforsexpheromoneandhostplantsignalsintortricidmoths AT bengtssonmarie odorantreceptorphylogenyconfirmsconservedchannelsforsexpheromoneandhostplantsignalsintortricidmoths AT walkerwilliamb odorantreceptorphylogenyconfirmsconservedchannelsforsexpheromoneandhostplantsignalsintortricidmoths |
_version_ |
1808105489760780288 |
spelling |
RepoAGROSAVIA396252024-07-23T03:00:42Z Odorant receptor phylogeny confirms conserved channels for sex pheromone and host plant signals in tortricid moths Odorant receptor phylogeny confirms conserved channels for sex pheromone and host plant signals in tortricid moths Gonzalez, Francisco Borrero Echeverry, Felipe Jósvai, Júlia K Strandh, Maria Unelius, C. Rikard Tóth, Miklós Witzgall, Peter Bengtsson, Marie Walker, William B. Genética y mejoramiento animal - L10 Plodia interpunctella Lepidoptera Sustancia química Insecto Transversal http://aims.fao.org/aos/agrovoc/c_30328 http://aims.fao.org/aos/agrovoc/c_4268 http://aims.fao.org/aos/agrovoc/c_49872 http://aims.fao.org/aos/agrovoc/c_8dcb26c2 The search for mates and food is mediated by volatile chemicals. Insects sense food odorants and sex pheromones through odorant receptors (ORs) and pheromone receptors (PRs), which are expressed in olfactory sensory neurons. Molecular phylogenetics of ORs, informed by behavioral and functional data, generates sound hypotheses for the identification of semiochemicals driving olfactory behavior. Studying orthologous receptors and their ligands across taxa affords insights into the role of chemical communication in reproductive isolation and phylogenetic divergence. The female sex pheromone of green budworm moth Hedya nubiferana (Lepidoptera, Totricidae) is a blend of two unsaturated acetates, only a blend of both elicits male attraction. Females produce in addition codlemone, which is the sex pheromone of another tortricid, codling moth Cydia pomonella. Codlemone also attracts green budworm moth males. Concomitantly, green budworm and codling moth males are attracted to the host plant volatile pear ester. A congruent behavioral response to the same pheromone and plant volatile in two tortricid species suggests co-occurrence of dedicated olfactory channels. In codling moth, one PR is tuned to both compounds, the sex pheromone codlemone and the plant volatile pear ester. Our phylogenetic analysis finds that green budworm moth expresses an orthologous PR gene. Shared ancestry, and high levels of amino acid identity and sequence similarity, in codling and green budworm moth PRs offer an explanation for parallel attraction of both species to the same compounds. A conserved olfactory channel for a sex pheromone and a host plant volatile substantiates the alliance of social and habitat signals in insect chemical communication. Field attraction assays confirm that in silico investigations of ORs afford powerful predictions for an efficient identification of behavior-modifying semiochemicals, for an improved understanding of the mechanisms of host plant attraction in insect herbivores and for the further development of sustainable insect control. National Genomics Infrastructure -NGI 2024-07-22T16:46:16Z 2024-07-22T16:46:16Z 2020-07 2020 article Artículo científico http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 https://onlinelibrary.wiley.com/doi/abs/10.1002/ece3.6458 2045-7758 http://hdl.handle.net/20.500.12324/39625 https://doi.org/10.1002/ece3.6458 reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA eng Ecology and Evolution 10 14 7334 7348 Ansebo, L., Ignell, R., Löfqvist, J., & Hansson, B. S. (2005). Responses to sex pheromone and plant odours by olfactory receptor neurons housed in sensilla auricillica of the codling moth, Cydia pomonella (Lepidoptera: Tortricidae). Journal of Insect Physiology, 51, 1066– 1074. https://doi.org/10.1016/j.jinsp hys.2005.05.003 Arguello, J. R., Cardoso-Moreira, M., Grenier, J. K., Gottipati, S., Clark, A. G., & Benton, R. (2016). Extensive local adaptation within the chemosensory system following Drosophila melanogaster's global expansion. Nature Communications, 7, 11855. https://doi.org/10.1038/ ncomm s11855 Arn, H., Rauscher, S., & Schmid, A. (1979). Sex attractant formulations and traps for the grape moth Eupoecilia ambiguella Hb. Mitteilungen Der Schweizer Entomologischen Gesellschaft, 52, 49–55. Arn, H., Schwarz, C., Limacher, H., & Mani, E. (1974). Sex attractant inhibitors of the codling moth Laspeyresia pomonella L. Experientia, 30, 1142–1144. https://doi.org/10.1007/BF019 23655 Arn, H., Städler, E., & Rauscher, S. (1975). The electroantennographic detector - a selective and sensitive tool in the gas chromatographic analysis of insect pheromones. Zeitschrift Für Naturforschung, 30c, 722–725. https://doi.org/10.1515/znc-1975-11-1204 Bäckman, A.-C., Anderson, P., Bengtsson, M., Löfqvist, J., Unelius, C. R., & Witzgall, P. (2000). Antennal response of codling moth males, Cydia pomonella ( L.) ( Lepidoptera: Tortricidae), t o t he g eometric isomers of codlemone and codlemone acetate. Journal of Comparative Physiology A, 186, 513–519. https://doi.org/10.1007/ s0035 90000 Bäckman, A.-C., Bengtsson, M., & Witzgall, P. (1997). Pheromone release by individual females of codling moth, Cydia pomonella L. (Lepidoptera: Tortricidae). Journal of Chemical Ecology, 23, 807–815. https://doi.org/10.1023/B:JOEC.00000 06412.16914.09 Baker, T. C. (2002). Mechanism for saltational shifts in pheromone communication systems. Proceedings of the National Academy of Science USA, 99, 13368–13370. https://doi.org/10.1073/pnas.22253 9799 Bengtsson, J. M., Gonzalez, F., Cattaneo, A. M., Montagne, N., Walker, W. B., Bengtsson, M., … Witzgall, P. (2014). A predicted sex pheromone receptor of codling moth Cydia pomonella detects the plant volatile pear ester. Frontiers in Ecology Evolution, 2, 33. https://doi. org/10.3389/fevo.2014.00033 Bengtsson, J. M., Trona, F., Montagne, N., Anfora, G., Ignell, R., Witzgall, P., & Jacquin-Joly, E. (2012). Putative chemosensory receptors of the codling moth, Cydia pomonella, identified by antennal transcriptome analysis. PLoS One, 7(2), e31620. https://doi.org/10.1371/journ al.pone.0031620 Bengtsson, M., Jaastad, G., Knudsen, G., Kobro, S., Bäckman, A.-C., Pettersson, E., & Witzgall, P. (2006). Plant volatiles mediate attraction to host and non-host plant in apple fruit moth, Argyresthia conjugella. Entomolgia Experimentalis Et Applicata, 118, 77–85. https://doi. org/10.1111/j.1570-7458.2006.00359.x Bengtsson, M., Liljefors, T., Hansson, B. S., Löfstedt, C., & Copaja, S. V. (1990). Structure-activity relationships for chain-shortened analogs of (Z)-5-decenyl acetate, a pheromone component of the turnip moth, Agrotis segetum. Journal of Chemical Ecology, 16, 667–684. https://doi.org/10.1007/BF010 16478 Borrero-Echeverry, F., Bengtsson, M., Nakamuta, K., & Witzgall, P. (2018). Plant odour and sex pheromone are integral elements of specific mate recognition in an insect herbivore. Evolution, 72, 2225– 2233. https://doi.org/10.1111/evo.13571 Boughman, J. W. (2002). How sensory drive can promote speciation. Trends in Ecology and Evolution, 17, 571–577. https://doi.org/10.1016/ S0169 -5347(02)02595 -8 Bradley, J. D., Tremewan, W. G., & Smith, A. (1979). British tortricoid moths. Tortricidae: Olethreutinae. London, UK: The Ray Society. Braunschmid, H., Mükisch, B., Rupp, T., Schäffler, I., Zito, P., Birtele, D., & Dötterl, S. (2017). Interpopulation variation in pollinators and floral scent of the lady’s-slipper orchid Cypripedium calceolus L. Arthropod- Plant Interactions, 11, 363–379. https://doi.org/10.1007/s1182 9-017-9512-x Bruce, T. J. A., & Pickett, J. A. (2011). Perception of plant volatile blends by herbivorous insects - finding the right mix. Phytochemistry, 72, 1605–1611. https://doi.org/10.1016/j.phyto chem.2011.04.011 Caballero-Vidal, G., Bouysset, C., Grunig, H., Fiorucci, S., Montagné, N., Golebiowski, J., & Jacquin-Joly, E. (2020). Machine learning decodes chemical features to identify novel agonists of a moth odorant receptor. Scientific Reports, 10(1), 1–9. https://doi.org/10.1038/s4159 8-020-58564 -9 Cao, D., Liu, Y., Wei, J., Liao, X., Walker, W. B., Li, J., & Wang, G. (2014). Identification of candidate olfactory genes in Chilo suppressalis by antennal transcriptome analysis. International Journal of Biological Science, 10, 846–860. https://doi.org/10.7150/ijbs.9297 Cao, S., Huang, T., Shen, J., Liu, Y., & Wang, G. (2020). An orphan pheromone receptor affects the mating behavior of Helicoverpa armigera. Frontires in Physiology, 11, 413. https://doi.org/10.3389/ fphys.2020.00413 Carde, A. M., Baker, T. C., & Carde, R. T. (1979). Identification of a four-component sex pheromone of the female Oriental fruit moth, Grapholitha molesta (Lepidoptera: Tortricidae). Journal of Chemical Ecology, 5, 423–427. https://doi.org/10.1007/BF009 87927 Carde, R. T., & Minks, A. K. (1995). Control of moth pests by mating disruption: Successes and constraints. Annual Review of Entomology, 40, 559–585. https://doi.org/10.1146/annur ev.en.40.010195.003015 Carson, R. (1962). Silent Spring. Boston, MA: Houghton Mifflin. Cattaneo, A. M., Gonzalez, F., Bengtsson, J. M., Corey, E. A., Jacquin-Joly, E., Montagne, N., … Bobkov, Y. V. (2017). Candidate pheromone receptors from the insect pest Cydia pomonella respond to pheromone and kairomone components. Scientific Reports, 7, 41105. https://doi. org/10.1038/srep4 1105 Chandler, D., Bailey, A. S., Tatchell, G. M., Davidson, G., Greaves, J., & Grant, W. P. (2011). The development, regulation and use of biopesticides for integrated pest management. Philosophical Transactions of the Royal Society of London B, 366, 1987–1998. https://doi. org/10.1098/rstb.2010.0390 Chang, X. Q., Nie, X. P., Zhang, Z., Zeng, F. F., Lv, L., Zhang, S., & Wang, M. Q. (2017). De novo analysis of the oriental armyworm Mythimna separata antennal transcriptome and expression patterns of odorant- binding proteins. Comparative Biochemistry and Physiology D, 22, 120–130. https://doi.org/10.1016/j.cbd.2017.03.001 Chepurwar, S., Gupta, A., Haddad, R., & Gupta, N. (2019). Sequencebased prediction of olfactory receptor responses. Chemical Senses, 44, 693–703. https://doi.org/10.1093/chems e/bjz078 Chmiel, J. A., Daisley, B. A., Burton, J. P., & Reid, G. (2019). Deleterious effects of neonicotinoid pesticides on Drosophila melanogaster immune pathways. MBio, 10, e01395-19. https://doi.org/10.1128/ mBio.01395 -19 Clyne, P. J., Warr, C. G., Freeman, M. R., Lessing, D., Kim, J., & Carlson, J. R. (1999). A novel family of divergent seven-transmembrane proteins: Candidate odorant receptors in Drosophila. Neuron, 22, 327– 338. https://doi.org/10.1016/S0896 -6273(00)81093 -4 Conchou, L., Lucas, P., Meslin, C., Proffit, M., Staudt, M., & Renou, M. (2019). Insect odorscapes: From plant volatiles to natural olfactory scenes. Frontiers in Physiology, 10, 972. https://doi.org/10.3389/ fphys.2019.00972 Corcoran, J. A., Jordan, M. D., Thrimawithana, A. H., Crowhurst, R. N., & Newcomb, R. D. (2015). The peripheral olfactory repertoire of the lightbrown apple moth, Epiphyas postvittana. PLoS One, 10, e0128596. https://doi.org/10.1371/journ al.pone.0128596 Couto, A., Alenius, M., & Dickson, B. J. (2005). Molecular, anatomical, and functional organization of the Drosophila olfactory system. Current Biology, 15, 1535–1547. https://doi.org/10.1016/j. cub.2005.07.034 De Fouchier, A., Walker, W. B., Montagne, N., Steiner, C., Binyameen, M., Schlyter, F., … Jacquin-Joly, E. (2017). Functional evolution of Lepidoptera olfactory receptors revealed by deorphanization of a moth repertoire. Nature Communications, 8, 1–11. https://doi. org/10.1038/ncomm s15709 Deutsch, C. A., Tewksbury, J. J., Tigchelaar, M., Battisti, D. S., Merrill, S. C., Huey, R. B., & Naylor, R. L. (2018). Increase in crop losses to insect pests in a warming climate. Science, 361, 916–919. https://doi. org/10.1126/scien ce.aat3466 Dietrich, M. (2003). Richard Goldschmidt: Hopeful monsters and other 'heresies'. Nature Reviews Genetics, 4, 68–74. https://doi. org/10.1038/nrg979 Dobritsa, A. A., Van Naters, W. V. D. G., Warr, C. G., Steinbrecht, R. A., & Carlson, J. R. (2003). Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron, 37, 827–841. https:// doi.org/10.1016/S0896 -6273(03)00094 -1 Dong, J., Song, Y., Li, W., Shi, J., & Wang, Z. (2016). Identification of putative chemosensory receptor genes from the Athetis dissimilis antennal transcriptome. PLoS One, 11, e0147768. https://doi.org/10.1371/ journ al.pone.0147768 Du, L., Zhao, X., Liang, X., Gao, X., Liu, Y., & Wang, G. (2018). Identification of candidate chemosensory genes in Mythimna separata by transcriptomic analysis. BMC Genomics, 19, 518. https://doi.org/10.1186/ s1286 4-018-4898-0 El-Sayed, A. M. (2019). The pherobase: database of pheromones and semiochemicals. www.phero base.com El-Sayed, A. M., Suckling, D. M., Byers, J. A., Jang, E. B., & Wearing, C. H. (2009). Potential of “lure and kill” in long-term pest management and eradication of invasive species. Journal of Economic Entomology, 102, 815–835. https://doi.org/10.1603/029.102.0301 El-Sayed, A., Unelius, R. C., Liblikas, I., Löfqvist, J., Bengtsson, M., & Witzgall, P. (1998). Effect of codlemone isomers on codling moth (Lepidoptera: Tortricidae) male attraction. Environmental Entomology, 27, 1250–1254. https://doi.org/10.1093/ ee/27.5.1250 Evenden, M. L., & Silk, P. J. (2016). The influence of Canadian research on semiochemical-based management of forest insect pests in Canada. The Canadian Entomologist, 148, S170–S209. https://doi. org/10.4039/tce.2015.17 Feng, B., Guo, Q., Zheng, K., Qin, Y., & Du, Y. (2017). Antennal transcriptome analysis of the piercing moth Oraesia emarginata (Lepidoptera: Noctuidae). PLoS One, 12, e0179433. https://doi.org/10.1371/journ al.pone.0179433 Fleischer, J., Pregitzer, P., Breer, H., & Krieger, J. (2018). Access to the odor world: Olfactory receptors and their role for signal transduction in insects. Cellular and Molecular Life Sciences, 75, 485–508. https:// doi.org/10.1007/s0001 8-017-2627-5 Frerot, B., Priesner, E., & Gallois, M. (1979). A sex attractant for the green budworm moth, Hedya nubiferana. Zeitschrift Für Naturforschung, 34c, 1248–1252. https://doi.org/10.1515/znc-1979-1229 Gonzalez, F., Bengtsson, J. M., Walker, W. B., Rodrigues Sousa, M. F., Cattaneo, A. M., Montagné, N., … Bengtsson, M. (2015). A conserved odorant receptor detects the same 1-indanone analogs in a tortricid and a noctuid moth. Frontires in Ecology and Evolution, 3, 131. https:// doi.org/10.3389/fevo.2015.00131 Gonzalez, F., Sousa, M., Conchou, L., Walker, W. B., Chakraborty, A., Karlsson, M., …Witzgall, P. (2020). An endophytic yeast odorant mediates codling moth attraction to apple (submitted). Gonzalez, F., Witzgall, P., & Walker, W. B. (2016). Protocol for heterologous expression of insect odourant receptors in Drosophila. Frontiers in Ecology Evolution, 4, 24. https://doi.org/10.3389/ fevo.2016.00024 Gonzalez, F., Witzgall, P., & Walker, W. B. (2017). Antennal transcriptomes of three tortricid moths reveal putative conserved chemosensory receptors for social and habitat olfactory cues. Scientific Reports, 7, 41829. https://doi.org/10.1038/srep4 1829 Grabe, V., Strutz, A., Baschwitz, A., Hansson, B. S., & Sachse, S. (2015). Digital in vivo 3D atlas of the antennal lobe of Drosophila melanogaster. Journal of Comparative Neurology, 523, 530–544. https://doi. org/10.1002/cne.23697 Gregg, P. C., Del Socorro, A. P., & Landolt, P. J. (2018). Advances in attract- and-kill for agricultural pests: Beyond pheromones. Annual Review of Entomology, 63, 453–470. https://doi.org/10.1146/annur ev-ento-03161 6-035040 Hallem, E. A., Ho, M. G., & Carlson, J. R. (2004). The molecular basis of odor coding in the Drosophila antenna. Cell, 117, 965–979. https://doi. org/10.1016/j.cell.2004.05.012 Hathaway, D. O., McGovern, T. P., Beroza, M., Moffitt, H. R., McDonough, L. M., & Butt, B. A. (1974). An inhibitor of sexual attraction of male codling moths to a synthetic sex pheromone and virgin females in traps. Environmental Entomology, 3, 522–524. https://doi. org/10.1093/ee/3.3.522 Jactel, H., Verheggen, F., Thiéry, D., Escobar-Gutiérrez, A. J., Gachet, E., & Desneux, N., Neonicotinoids Working Group (2019). Alternatives to neonicotinoids. Environment International, 129, 423–429. https:// doi.org/10.1016/j.envint.2019.04.045 Jia, X.-J., Wang, H.-X., Yan, Z.-G., Zhang, M.-Z., Wei, C.-H., Qin, X.-C., … Du, Y.-L. (2016). Antennal transcriptome and differential expression of olfactory genes in the yellow peach moth, Conogethes punctiferalis (Lepidoptera: Crambidae). Scientific Reports, 6, 29067. https://doi. org/10.1038/srep2 9067 Jia, X., Zhang, X., Liu, H., Wang, R., & Zhang, T. (2018). Identification of chemosensory genes from the antennal transcriptome of Indian meal moth Plodia interpunctella. PLoS One, 13, e0189889. https://doi. org/10.1371/journ al.pone.0189889 Jiang, X. J., Guo, H., Di, C., Yu, S., Zhu, L., Huang, L. Q., & Wang, C. Z. (2014). Sequence similarity and functional comparisons of pheromone receptor orthologs in two closely related Helicoverpa species. Insect Biochemistry and Molecular Biology, 48, 63–74. https://doi. org/10.1016/j.ibmb.2014.02.010 Jósvai, J. K., Koczor, S., & Tóth, M. (2016). Traps baited with pear ester and acetic acid attract both sexes of Hedya nubiferana (Lepidoptera: Tortricidae). Journal of Applied Entomology, 140, 81–90. https://doi. org/10.1111/jen.12216 Katoh, K., Rozewicki, J., & Yamada, K. D. (2019). MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 20, 1160–1166. https://doi. org/10.1093/bib/bbx108 Khan, Z. R., Midega, C. A. O., Pittchar, J. O., Murage, A. W., Birkett, M. A., Bruce, T. J. A., & Pickett, J. A. (2014). Achieving food security for one million sub-Saharan African poor through push-pull innovation by 2020. Philosophical Transactions of the Royal Society B, 369, 20120284. https://doi.org/10.1098/rstb.2012.0284 Knight, A. L., & Light, D. M. (2013). Adding microencapsulated pear ester to insecticides for control of Cydia pomonella (Lepidoptera: Tortricidae) in apple. Pest Management Science, 69, 66–74. https:// doi.org/10.1002/ps.3363 Knight, A., Light, D., & Chebny, V. (2013). Monitoring codling moth (Lepidoptera: Tortricidae) in orchards treated with pear ester and sex pheromone combo dispensers. Journal of Applied Entomology, 137, 214–224. https://doi.org/10.1111/j.1439-0418.2012.01715.x Knight, A. L., Mujica, V., Herrera, S. L., & Tasin, M. (2019). Addition of terpenoids to pear ester plus acetic acid increases catches of codling moth (Lepidoptera: Tortricidae). Journal of Applied Entomology, 143, 942–947. https://doi.org/10.1111/jen.12682 Knight, A. L., Stelinski, L. L., Hebert, V., Gut, L., Light, D., & Brunner, J. (2012). Evaluation of novel semiochemical dispensers simultaneously releasing pear ester and sex pheromone for mating disruption of codling moth (Lepidoptera: Tortricidae). Journal of Applied Entomology, 136, 79–86. https://doi. org/10.1111/j.1439-0418.2011.01633.x Knudsen, G. K., Bengtsson, M., Kobro, S., Jaastad, G., Hofsvang, T., & Witzgall, P. (2008). Discrepancy in laboratory and field attraction of apple fruit moth Argyresthia conjugella to host plant volatiles. Physiological Entomology, 33, 1–6. https://doi. org/10.1111/j.1365-3032.2007.00592.x Knudsen, G. K., Norli, H. R., & Tasin, M. (2017). The ratio between field attractive and background volatiles encodes host-plant recognition in a specialist moth. Frontiers in Plant Science, 8, 2206. https://doi. org/10.3389/fpls.2017.02206 Knudsen, G. K., & Tasin, M. (2015). Spotting the invaders: A monitoring system based on plant volatiles to forecast apple fruit moth attacks in apple orchards. Basic and Applied Ecology, 16, 354–364. https://doi. org/10.1016/j.baae.2015.03.006 Knudsen, J. T., Tollsten, L., & Bergström, L. G. (1993). Floral scents: A checklist of volatile compounds isolated by head-space techniques. Phytochemistry, 33, 253–280. https://doi.org/10.1016/0031- 9422(93)85502 -I Koenig, C., Hirsh, A., Bucks, S., Klinner, C., Vogel, H., Shukla, A., … Grosse- Wilde, E. (2015). A reference gene set for chemosensory receptor genes of Manduca sexta. Insect Biochemistry and Molecular Biology, 66, 51–63. https://doi.org/10.1016/j.ibmb.2015.09.007 Kovanci, O. B. (2015). Co-application of microencapsulated pear ester and codlemone for mating disruption of Cydia pomonella. Journal of Pest Science, 88, 311–319. https://doi.org/10.1007/s1034 0-014-0619-x Krieger, J., Gondesen, I., Forstner, M., Gohl, T., Dewer, Y., & Breer, H. (2009). HR11 and HR13 receptor-expressing neurons are housed together in pheromone-responsive sensilla trichodea of male Heliothis virescens. Chemical Senses, 34, 469–477. https://doi.org/10.1093/ chems e/bjp010 Lebreton, S., Borrero-Echeverry, F., Gonzalez, F., Solum, M., Wallin, E., Hedenström, E., … Witzgall, P. (2017). A Drosophila female pheromone elicits species-specific long-range attraction via an olfactory channel with dual specificity for sex and food. BMC Biology, 15, 88. https://doi.org/10.1186/s1291 5-017-0427-x Lemfack, M. C., Gohlke, B. O., Toguem, S. M. T., Preissner, S., Piechulla, B., & Preissner, R. (2018). mVOC 2.0: A database of microbial volatiles. Nucleic Acids Research, 46, D1261–D1265. https://doi.org/10.1093/ nar/gkx1016 Li, G., Du, J., Li, Y., & Wu, J. (2015). Identification of putative olfactory genes from the oriental fruit moth Grapholita molesta via an antennal transcriptome analysis. PLoS One, 10(11), e0142193. https://doi. org/10.1371/journ al.pone.0142193 Light, D. M. (2016). Control and monitoring of codling moth (Lepidoptera: Tortricidae) in walnut orchards treated with novel high-load, low-density “meso” dispensers of sex pheromone and pear ester. Environmental Entomology, 45, 700–707. https://doi.org/10.1093/ee/ nvw017 Light, D. M., & Beck, J. J. (2012). Behavior of codling moth (Lepidoptera: Tortricidae) neonate larvae on surfaces treated with microencapsulated pear ester. Environmental Entomology, 41, 603–611. https://doi. org/10.1603/EN11273 Light, D. M., & Knight, A. (2005). Specificity of codling moth (Lepidoptera: Tortricidae) for the host plant kairomone, ethyl (2E,4Z)-2,4- decadienoate: Field bioassays with pome fruit volatiles, analogue, and isomeric compounds. Journal of Agricultural and Food Chemistry, 53, 4046–4053. https://doi.org/10.1021/jf040 431r Light, D. M., & Knight, A. L. (2011). Microencapsulated pear ester enhances insecticide efficacy in walnuts for codling moth (Lepidoptera: Tortricidae) and navel orangeworm (Lepidoptera: Pyralidae). Journal of Economic Entomology, 104, 1309–1315. https://doi.org/10.1603/ EC11058 Light, D. M., Knight, A. L., Henrick, C. A., Rajapaska, D., Lingren, B., Dickens, J. C., … Campbell, B. C. (2001). A pear-derived kairomone with pheromonal potency that attracts male and female codling moth, Cydia pomonella (L.). Naturwissenschaften, 88, 333–338. (10.1007/s0011 40100 243) Liu, Z., Smagghe, G., Lei, Z., & Wang, J. J. (2016). Identification of maleand female-specific olfaction genes in antennae of the Oriental fruit fly (Bactrocera dorsalis). PLoS One, 11, e0147783. (10.1371/journ al.pone.01477 83) Ljunggren, J., Borrero-Echeverry, F., Chakraborty, A., Lindblom, T. U., Hedenström, E., Karlsson, M., … Bengtsson, M. (2019). Yeast volatomes differentially effect larval feeding in an insect herbivore. Appl Environm Microbiol, 85, e01761–e1819. https://doi.org/10.1128/ AEM.01761 -19 Longing, S. D., Peterson, E. M., Jewett, C. T., Rendon, B. M., Discua, S. A., Wooten, K. J., … McIntyre, N. E. (2020). Exposure of foraging bees (Hymenoptera) to neonicotinoids in the U.S. southern high plains. Environmental Entomology. https://doi.org/10.1093/ee/nvaa003 Lu, P. F., Wang, R., Wang, C. Z., Luo, Y. Q., & Qiao, H. L. (2015). Sexual differences in electrophysiological and behavioral responses of Cydia molesta to peach and pear volatiles. Entomologia Experimentalis Et Applicata, 157, 279–290. https://doi.org/10.1111/eea.12362 McBride, C. S., & Arguello, J. R. (2007). Five Drosophila genomes reveal nonneutral evolution and the signature of host specialization in the chemoreceptor superfamily. Genetics, 177, 1395–1416. https://doi. org/10.1534/genet ics.107.078683 Menuz, K., Larter, N. K., Park, J., & Carlson, J. R. (2014). An RNA-seq screen of the Drosophila antenna identifies a transporter necessary for ammonia detection. PLoS Genetics, 10, e1004810. https://doi. org/10.1371/journ al.pgen.1004810 Muench, D., & Galizia, C. G. (2016). DoOR 2.0-Comprehensive mapping of Drosophila melanogaster odorant responses. Scientific Reports, 6, 21841. https://doi.org/10.1038/srep2 1841 Najar-Rodriguez, A. J., Galizia, C. G., Stierle, J., & Dorn, S. (2010). Behavioral and neurophysiological responses of an insect to changing ratios of constituents in host plant-derived volatile mixtures. Journal of Experimental Biology, 213, 3388–3397. https://doi.org/10.1242/jeb.046284 Park, K. C., Withers, T. M., Suckling, D. M., & Collaboration, B. B. B. (2015). Identification of olfactory receptor neurons in Uraba lugens (Lepidoptera: Nolidae) and its implications for host range. Journal of Insect Physiology, 78, 33–46. https://doi.org/10.1016/j.jinsp hys.2015.04.010 Paterson, H. (1978). More evidence against speciation by reinforcement. South African Journal of Science, 74, 369–371. Phelan, P. L. (1992). Evolution of sex pheromones and the role of assymetric tracking. In B. D. Roitberg, & M. B. Isman (Eds.), Insect chemical ecology: An evolutionary approach (pp. 265–314). New York, NY: Chapman and Hall. Porcel, M., Sjöberg, P., Swiergiel, W., Dinwiddie, R., Rämert, B., & Tasin, M. (2015). Mating disruption of Spilonota ocellana and other apple orchard tortricids using a multispecies reservoir dispenser. Pest Management Science, 71, 562–570. https://doi.org/10.1002/ps.3844 Ramdya, P., & Benton, R. (2010). Evolving olfactory systems on the fly. Trends in Genetics, 26, 307–316. https://doi.org/10.1016/j. tig.2010.04.004 Rauscher, S., Arn, H., & Guerin, P. (1984). Effects of dodecyl acetate and Z-10-tridecenyl acetate on attraction of Eupoecilia ambiguella males to the main sex pheromone component, Z-9-Dodecenyl acetate. Journal of Chemical Ecology, 10, 253–264. https://doi.org/10.1007/ BF009 87853 Reddy, G. V., & Guerrero, A. (2004). Interactions of insect pheromones and plant semiochemicals. Trends in Plant Science, 9, 253–261. https:// doi.org/10.1016/j.tplan ts.2004.03.009 Reddy, G. V., & Guerrero, A. (2010). New pheromones and insect control strategies. Vitamins and Hormones, 83, 493–519. https://doi. org/10.1016/S0083 -6729(10)83020 -1 Regier, J. C., Brown, J. W., Mitter, C., Baixeras, J., Cho, S., Cummings, M. P., & Zwick, A. (2012). A molecular phylogeny for the leafroller moths (Lepidoptera: Tortricidae) and its implications for classification and life history evolution. PLoS One, 7, e35574. https://doi.org/10.1371/ journ al.pone.0035574 Ridgway, R. L., Silverstein, R. M., & Inscoe, M. N. (1990). Behaviormodifying chemicals for insect management: Applications of pheromones and other attractants. New York, NY: Marcel Dekker. Robertson, H. M. (2019). Molecular evolution of the major arthropod chemoreceptor gene families. Annual Review of Entomology, 64, 227– 242. https://doi.org/10.1146/annur ev-ento-02011 7-043322 Rojas, V., Jimenez, H., Palma-Millanao, R., Gonzalez-Gonzalez, A., Machuca, J., Godoy, R., … Venthur, H. (2018). Analysis of the grapevine moth Lobesia botrana antennal transcriptome and expression of odorant-binding and chemosensory proteins. Comparative Biochemistry and Physiology D, 27, 1–12. https://doi.org/10.1016/j. cbd.2018.04.003 Rosenthal, G. G. (2017). Mate choice: The evolution of sexual decision making from microbes to humans. Princeton, NJ: Princeton University Press. Rouyar, A., Deisig, N., Dupuy, F., Limousin, D., Wycke, M. A., Renou, M., & Anton, S. (2015). Unexpected plant odor responses in a moth pheromone system. Frontiers in Physiology, 6, 148. https://doi.org/10.3389/ fphys.2015.00148 Sánchez-Gracia, A., Vieira, F., & Rozas, J. (2009). Molecular evolution of the major chemosensory gene families in insects. Heredity, 103, 208–216. https://doi.org/10.1038/hdy.2009.55 Schmidt, S., Anfora, G., Ioriatti, C., Germinara, G. S., Rotundo, G., & De Cristofaro, A. (2007). Biological activity of ethyl (E, Z)-2,4-decadienoate on different tortricid species: Electrophysiological responses and field tests. Environmental Entomology, 36, 1025–1031. https://doi.org/10.16 03/0046-225X(2007)36[1025:BAOEE O]2.0.CO;2 Schmidt, S., Tomasi, C., Pasqualini, E., & Ioriatti, C. (2008). The biological efficacy of pear ester on the activity of granulosis virus for codling moth. Journal of Pest Science, 81, 29–34. https://doi.org/10.1007/ s1034 0-007-0181-x Schorkopf, D. L. P., Molnar, B. P., Solum, M., Larsson, M. C., Millar, J. G., Karpati, Z., & Dekker, T. (2019). False positives from impurities result in incorrect functional characterization of receptors in chemosensory studies. Progress in Neurobiology, 181, 101661. https://doi. org/10.1016/j.pneur obio.2019.101661 Seibold, S., Gossner, M. M., Simons, N. K., Blüthgen, N., Müller, J., Ambarli, D., … Weisser, W. W. (2019). Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature, 574, 671–674. https://doi.org/10.1038/s4158 6-019-1684-3 Steinwender, B., Thrimawithana, A. H., Crowhurst, R. N., & Newcomb, R. D. (2015). Pheromone receptor evolution in the cryptic leafroller species, Ctenopseustis obliquana and C. herana. Journal of Molecular Evolution, 80, 42–56. https://doi.org/10.1007/s0023 9-014-9650-z Stenberg, J. A., Heil, M., Åhman, I., & Björkman, C. (2015). Optimizing crops for biocontrol of pests and disease. Trends in Plant Science, 20, 698–712. https://doi.org/10.1016/j.tplan ts.2015.08.007 Suckling, D. M., Stringer, L. D., Stephens, A. E., Woods, B., Williams, D. G., Baker, G., & El-Sayed, A. M. (2014). From integrated pest management to integrated pest eradication: Technologies and future needs. Pest Management Science, 70, 179–189. https://doi.org/10.1002/ ps.3670 Sutherland, O. R. W., & Hutchins, R. F. N. (1972). α-Farnesene, a natural attractant for codling moth larvae. Nature, 239, 170. Tamiru, A., Khan, Z. R., & Bruce, T. J. (2015). New directions for improving crop resistance to insects by breeding for egg induced defence. Current Opinion in Insect Science, 9, 51–55. https://doi.org/10.1016/j. cois.2015.02.011 Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729. https://doi. org/10.1093/molbe v/mst197 Tasin, M., Bäckman, A.-C., Anfora, G., Carlin, S., Ioriatti, C., & Witzgall, P. (2010). Attraction of female grapevine moth to common and specific olfactory cues from 2 host plants. Chemical Senses, 35, 57–64. https://doi.org/10.1093/chems e/bjp082 Tian, Z., Sun, L., Li, Y., Quan, L., Zhang, H., Yan, W., … Qiu, G. (2018). Antennal transcriptome analysis of the chemosensory gene families in Carposina sasakii (Lepidoptera: Carposinidae). BMC Genomics, 19, 544. https://doi.org/10.1186/s1286 4-018-4900-x Trona, F., Anfora, G., Balkenius, A., Bengtsson, M., Tasin, M., Knight, A., … Ignell, R. (2013). Neural coding merges sex and habitat chemosensory signals in an insect herbivore. Proceedings of the Royal Society B, 280, 20130267. https://doi.org/10.1098/rspb.2013.0267 Trona, F., Anfora, G., Bengtsson, M., Witzgall, P., & Ignell, R. (2010). Coding and interaction of sex pheromone and plant volatile signals in the antennal lobe of the codling moth Cydia pomonella. Journal of Experimental Biology, 213, 4291–4303. https://doi.org/10.1242/ jeb.047365 Varela, N., Avilla, J., Gemeno, C., & Anton, S. (2011). Ordinary glomeruli in the antennal lobe of male and female tortricid moth Grapholita molesta (Busck)(Lepidoptera: Tortricidae) process sex pheromone and host-plant volatiles. Journal of Experimental Biology, 214, 637–645. https://doi.org/10.1242/jeb.047316 Wagner, D. L. (2020). Insect declines in the Anthropocene. Annual Review of Entomology, 65, 457–480. https://doi.org/10.1146/annur evento- 01101 9-025151 Walker, W. B., Gonzalez, F., Garczynski, S. F., & Witzgall, P. (2016). The chemosensory receptors of codling moth Cydia pomonella - expression in larvae and adults. Scientific Reports, 6, 23518. https://doi. org/10.1038/srep2 3518 Wan, F., Yin, C., Tang, R., Chen, M., Wu, Q., Huang, C., … Wang, G. (2019). A chromosome-level genome assembly of Cydia pomonella provides insights into chemical ecology and insecticide resistance. Nature Communications, 10, 1–14. https://doi.org/10.1038/s4146 7-019- 12175 -9 Witzgall, P., Bengtsson, M., Buser, H. R., Chambon, P. J., Priesner, E., Wildbolz, T., & Arn, H. (1991). Sex pheromones of Spilonota ocellana and Spilonota laricana. Entomologia Experimentalis et Applicata, 60, 219–223. https://doi.org/10.1111/j.1570-7458.1991. tb015 41.x Witzgall, P., Bengtsson, M., Rauscher, S., Liblikas, I., Bäckman, A.- C., Coracini, M., … Löfqvist, J. (2001). Identification of further sex pheromone synergists in the codling moth, Cydia pomonella. Entomologia Experimentalis Et Applicata, 101, 131–141. https://doi. org/10.1046/j.1570-7458.2001.00898.x Witzgall, P., Bengtsson, M., Unelius, C. R., & Löfqvist, J. (1993). Attraction of pea moth Cydia nigricana F. (Lepidoptera: Tortricidae) to female sex pheromone (E, E)-8,10-dodecadien-1-yl acetate, is inhibited by geometric isomers (E, Z), (Z, E) and (Z, Z). Journal of Chemical Ecology, 19, 1917–1928. https://doi.org/10.1007/BF009 83796 Witzgall, P., Chambon, J.-P., Bengtsson, M., Unelius, C. R., Appelgren, M., Makranczy, G., … Löfqvist, J. (1996). Sex pheromones and attractants in the Eucosmini and Grapholitini (Lepidoptera, Tortricidae). Chemoecology, 7, 13–23. https://doi.org/10.1007/BF012 40633 Witzgall, P., Kirsch, P., & Cork, A. (2010). Sex pheromones and their impact on pest management. Journal of Chemical Ecology, 36, 80–100. https://doi.org/10.1007/s1088 6-009-9737-y Witzgall, P., Stelinski, L., Gut, L., & Thomson, D. (2008). Codling moth management and chemical ecology. Annual Review of Entomology, 53, 503–522. https://doi.org/10.1146/annur ev.ento.53.103106.093323 Witzgall, P., Trematerra, P., Liblikas, I., Bengtsson, M., & Unelius, C. R. (2010). Pheromone communication channels in tortricid moths: Lower specificity of alcohol vs. acetate geometric isomer blends. Bulletin of Entomological Research, 100, 225–230. https://doi. org/10.1017/S0007 48530 9990186 Yamamuro, M., Komuro, T., Kamiya, H., Kato, T., Hasegawa, H., & Kameda, Y. (2019). Neonicotinoids disrupt aquatic food webs and decrease fishery yields. Science, 366, 620–623. https://doi.org/10.1126/scien ce.aax3442 Yang, S., Cao, D., Wang, G., & Liu, Y. (2017). Identification of genes involved in chemoreception in Plutella xyllostella by antennal transcriptome analysis. Scientific Reports, 7, 1–16. https://doi.org/10.1038/ s4159 8-017-11646 -7 Zeng, F.-F., Zhao, Z.-F., Yan, M.-J., Zhou, W., Zhang, Z., Zhang, A., … Wang, M.-Q. (2015). Identification and comparative expression profiles of chemoreception genes revealed from major chemoreception organs of the rice leaf folder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). PLoS One, 10, e0144267. https://doi.org/10.1371/journ al.pone.0144267 Zhang, D. D., & Löfstedt, C. (2015). Moth pheromone receptors: Gene sequences, function, and evolution. Frontiers in Ecology and Evolution, 3, 105. https://doi.org/10.3389/fevo.2015.00105 Zhang, J., Wang, B., Dong, S., Cao, D., Dong, J., Walker, W. B., … Wang, G. (2015). Antennal transcriptome analysis and comparison of chemosensory gene families in two closely related noctuidae moths, Helicoverpa armigera and H. assulta. PLoS One, 10, e0117054. https:// doi.org/10.1371/journ al.pone.0117054 Zhang, S.-F., Liu, H.-H., Kong, X.-B., Wang, H.-B., Liu, F., & Zhang, Z. (2017). Identification and expression profiling of chemosensory genes in Dendrolimus punctatus Walker. Frontiers in Physiology, 8, 471. https://doi.org/10.3389/fphys.2017.00471 Zhang, S., Zhang, Z., Wang, H., & Kong, X. (2014). Antennal transcriptome analysis and comparison of olfactory genes in two sympatric defoliators, Dendrolimus houi and Dendrolimus kikuchii (Lepidoptera: Lasiocampidae). Insect Biochemistry and Molecular Biology, 52, 69–81. https://doi.org/10.1016/j.ibmb.2014.06.006 Zhang, Y.-N., Jin, J.-Y., Jin, R., Xia, Y.-H., Zhou, J.-J., Deng, J.-Y., & Dong, S.-L. (2013). Differential expression patterns in chemosensory and non-chemosensory tissues of putative chemosensory genes identified by transcriptome analysis of insect pest the purple stem borer Sesamia inferens (Walker). PLoS One, 8, e69715. https://doi. org/10.1371/journ al.pone.0069715 Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf application/pdf Wiley Alemania Ecology and Evolution; Vol.10 Núm.14 (2020): Ecology and Evolution (Julio); p7334–7348 |