A correlation structure for the analysis of Gaussian and non-Gaussian responses in crossover experimental designs with repeated measures
In this paper, we propose a family of correlation structures for crossover designs with repeated measures for both, Gaussian and non-Gaussian responses using generalized estimating equations (GEE). The structure considers two matrices: one that models between-period correlation and another one th...
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | Inglés |
Publicado: |
Springer Nature
2024
|
Materias: | |
Acceso en línea: | https://link.springer.com/article/10.1007/s00362-022-01391-z http://hdl.handle.net/20.500.12324/39372 https://doi.org/10.1007/s00362-022-01391-z |
id |
RepoAGROSAVIA39372 |
---|---|
record_format |
dspace |
institution |
Corporación Colombiana de Investigación Agropecuaria |
collection |
Repositorio AGROSAVIA |
language |
Inglés |
topic |
Carry-over effect Cross-over design Generalized estimating equations Kronecker correlation Overdispersion count data Ecuaciones Dispersión Métodos estadísticos Ganadería y especies menores http://aims.fao.org/aos/agrovoc/c_8bc08746 http://aims.fao.org/aos/agrovoc/c_2333 http://aims.fao.org/aos/agrovoc/c_7377 |
spellingShingle |
Carry-over effect Cross-over design Generalized estimating equations Kronecker correlation Overdispersion count data Ecuaciones Dispersión Métodos estadísticos Ganadería y especies menores http://aims.fao.org/aos/agrovoc/c_8bc08746 http://aims.fao.org/aos/agrovoc/c_2333 http://aims.fao.org/aos/agrovoc/c_7377 Martinez Niño, Carlos Alberto Cruz, N. A. Melo, O. O. A correlation structure for the analysis of Gaussian and non-Gaussian responses in crossover experimental designs with repeated measures |
description |
In this paper, we propose a family of correlation structures for crossover designs with
repeated measures for both, Gaussian and non-Gaussian responses using generalized
estimating equations (GEE). The structure considers two matrices: one that models
between-period correlation and another one that models within-period correlation.
The overall correlation matrix, which is used to build the GEE, corresponds to the
Kronecker between these matrices. A procedure to estimate the parameters of the correlation matrix is proposed, its statistical properties are studied and a comparison
with standard models using a single correlation matrix is carried out. A simulation study showed a superior performance of the proposed structure in terms of the
quasi-likelihood criterion, efficiency, and the capacity to explain complex correlation
phenomena patterns in longitudinal data from crossover designs. |
format |
article |
author |
Martinez Niño, Carlos Alberto Cruz, N. A. Melo, O. O. |
author_facet |
Martinez Niño, Carlos Alberto Cruz, N. A. Melo, O. O. |
author_sort |
Martinez Niño, Carlos Alberto |
title |
A correlation structure for the analysis of Gaussian and
non-Gaussian responses in crossover experimental designs with repeated measures |
title_short |
A correlation structure for the analysis of Gaussian and
non-Gaussian responses in crossover experimental designs with repeated measures |
title_full |
A correlation structure for the analysis of Gaussian and
non-Gaussian responses in crossover experimental designs with repeated measures |
title_fullStr |
A correlation structure for the analysis of Gaussian and
non-Gaussian responses in crossover experimental designs with repeated measures |
title_full_unstemmed |
A correlation structure for the analysis of Gaussian and
non-Gaussian responses in crossover experimental designs with repeated measures |
title_sort |
correlation structure for the analysis of gaussian and
non-gaussian responses in crossover experimental designs with repeated measures |
publisher |
Springer Nature |
publishDate |
2024 |
url |
https://link.springer.com/article/10.1007/s00362-022-01391-z http://hdl.handle.net/20.500.12324/39372 https://doi.org/10.1007/s00362-022-01391-z |
work_keys_str_mv |
AT martinezninocarlosalberto acorrelationstructurefortheanalysisofgaussianandnongaussianresponsesincrossoverexperimentaldesignswithrepeatedmeasures AT cruzna acorrelationstructurefortheanalysisofgaussianandnongaussianresponsesincrossoverexperimentaldesignswithrepeatedmeasures AT melooo acorrelationstructurefortheanalysisofgaussianandnongaussianresponsesincrossoverexperimentaldesignswithrepeatedmeasures AT martinezninocarlosalberto correlationstructurefortheanalysisofgaussianandnongaussianresponsesincrossoverexperimentaldesignswithrepeatedmeasures AT cruzna correlationstructurefortheanalysisofgaussianandnongaussianresponsesincrossoverexperimentaldesignswithrepeatedmeasures AT melooo correlationstructurefortheanalysisofgaussianandnongaussianresponsesincrossoverexperimentaldesignswithrepeatedmeasures |
_version_ |
1808107755876122624 |
spelling |
RepoAGROSAVIA393722024-05-21T03:02:21Z A correlation structure for the analysis of Gaussian and non-Gaussian responses in crossover experimental designs with repeated measures Martinez Niño, Carlos Alberto Cruz, N. A. Melo, O. O. Carry-over effect Cross-over design Generalized estimating equations Kronecker correlation Overdispersion count data Ecuaciones Dispersión Métodos estadísticos Ganadería y especies menores http://aims.fao.org/aos/agrovoc/c_8bc08746 http://aims.fao.org/aos/agrovoc/c_2333 http://aims.fao.org/aos/agrovoc/c_7377 In this paper, we propose a family of correlation structures for crossover designs with repeated measures for both, Gaussian and non-Gaussian responses using generalized estimating equations (GEE). The structure considers two matrices: one that models between-period correlation and another one that models within-period correlation. The overall correlation matrix, which is used to build the GEE, corresponds to the Kronecker between these matrices. A procedure to estimate the parameters of the correlation matrix is proposed, its statistical properties are studied and a comparison with standard models using a single correlation matrix is carried out. A simulation study showed a superior performance of the proposed structure in terms of the quasi-likelihood criterion, efficiency, and the capacity to explain complex correlation phenomena patterns in longitudinal data from crossover designs. Facultad de Enfermería, Universidad Nacional de Colombia, Bogotá, Colombia 2024-05-20T16:17:05Z 2024-05-20T16:17:05Z 2022 2022 article Artículo científico http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 https://link.springer.com/article/10.1007/s00362-022-01391-z http://hdl.handle.net/20.500.12324/39372 https://doi.org/10.1007/s00362-022-01391-z reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA eng CornellUniversity 65 1 263 290 Basu S, Santra S (2010) A joint model for incomplete data in crossover trials. J Stat Plan Inference 140(10):2839–2845 Biabani M, Farrell M, Zoghi M, Egan G, Jaberzadeh S (2018) Crossover design in transcranial direct current stimulation studies on motor learning: potential pitfalls and difficulties in interpretation of findings. Rev Neurosci 29(4):463–473 Boik RJ (1991) Scheffés mixed model for multivariate repeated measures: a relative efficiency evaluation. Commun Stat 20(4):1233–1255 Carey VJ (2019) Gee: Generalized Estimation Equation Solver. R package version 4.13-20. https://CRAN. R-project.org/package=gee Cordeiro GM (2004) On Pearson’s residuals in generalized linear models. Stat Probab Lett 66(3):213–219 Cordeiro GM, McCullagh P (1991) Bias correction in generalized linear models. J R Stat Soc Ser B (Methodological) 53(3):629–643 Cox DR, Snell EJ (1968) A general definition of residuals. J R Stat Soc Ser B 30(2):248–265 Curtin F (2017) Meta-analysis combining parallel and crossover trials using generalised estimating equation method. Res Synth Methods 8(3):312–320 Davis CS (2002) Statistical methods for the analysis of repeated measurements. Springer, San Diego Diaz FJ, Berg MJ, Krebill R, Welty T, Gidal BE, Alloway R, Privitera M (2013) Random-effects linear modeling and sample size tables for two special crossover designs of average bioequivalence studies: the four-period, two-sequence, two-formulation and six-period, three-sequence, three-formulation designs. Clin Pharmacokinet 52(12):1033–1043 Dubois A, Lavielle M, Gsteiger S, Pigeolet E, Mentré F (2011) Model-based analyses of bioequivalence crossover trials using the stochastic approximation expectation maximisation algorithm. Stat Med 30(21):2582–2600 Forbes AB, Akram M, Pilcher D, Cooper J, Bellomo R (2015) Cluster randomised crossover trials with binary data and unbalanced cluster sizes: application to studies of near-universal interventions in intensive care. Clin Trials 12(1):34–44 Grayling MJ, Mander AP, Wason JM (2018) Blinded and unblinded sample size reestimation in crossover trials balanced for period. Biometr J 60(5):917–933 Hao C, von Rosen D, von Rosen T (2015) Explicit influence analysis in two-treatment balanced crossover models. Math Methods Stat 24(1):16–36 Hardin JW, Hilbe J (2003) Generalized estimating equations. Chapman & Hall, Boca Raton Harville DA (1997) Matrix algebra from a statistician’s perspective, vol 1. Springer, New York Hin L-Y,Wang Y-G (2009)Working-correlation-structure identification in generalized estimating equations. Stat Med 28(4):642–658 Hinkelmann K, Kempthorne O (2005) Design and analysis of experiments. Wiley series in probability and mathematical statistics. Applied probability and statistics. Wiley, New York, p 2 Jaime GO (2019) Uso de Un Residuo de Papel Como Suplemento Para Vacas Lecheras. Universidad Nacional de Colombia, Sede Bogota, Tesis de maestría Jankar J, Mandal A (2021) Optimal crossover designs for generalized linear models: an application to work environment experiment. Stat Appl 19(1):319–336 Jankar J, Mandal A, Yang J (2020) Optimal crossover designs for generalized linear models. J Stat Theory Pract 14(2):1–27 Jones B, Kenward MG (2015) Design and analysis of cross-over trials, 3rd edn. Chapman & Hall/CRC, Boca Raton Josephy H, Vansteelandt S, Vanderhasselt M-A, Loeys T (2015) Within-subject mediation analysis in ab/ba crossover designs. Int J Biostat 11(1):1–22 Kitchenham B, Madeyski L, Curtin F (2018) Corrections to effect size variances for continuous outcomes of cross-over clinical trials. Stat Med 37(2):320–323 Krzy´sko M, Skorzybut M (2009) Discriminant analysis of multivariate repeated measures data with a Kronecker product structured covariance matrices. Stat Papers 50(4):817–835 Lancaster H (1965) The Helmert matrices. Am Math Mntly 72(1):4–12 Leorato S, Mezzetti M (2016) Spatial panel data model with error dependence: a Bayesian separable covariance approach. Bayesian Anal 11(4):1035–1069 Li F, Forbes AB, Turner EL, Preisser JS (2018) Power and sample size requirements for gee analyses of cluster randomized crossover trials. Stat Med 1:1 Li F, Forbes AB, Turner EL, Preisser JS (2019) Power and sample size requirements for gee analyses of cluster randomized crossover trials. Stat Med 38(4):636–649 Liang K-Y, Zeger SL (1986) Longitudinal data analysis using generalized linear models. Biometrika 73(1):13–22 Liu F, Li Q (2016) A Bayesian model for joint analysis of multivariate repeated measures and time to event data in crossover trials. Stat Methods Med Res 25(5):2180–2192 Lui K-J (2015) Test equality between three treatments under an incomplete block crossover design. J Biopharm Stat 25(4):795–811 Madeyski L, Kitchenham B (2018) Effect sizes and their variance for ab/ba crossover design studies. Empirical Softw Eng 23(4):1982–2017 McDaniel LS, Henderson NC, Rathouz PJ (2013) Fast pure R implementation of GEE: application of the Matrix package. R J 5:181–187 Oh HS, Ko S-G, Oh M-S (2003) A Bayesian approach to assessing population bioequivalence in a 2 2 2 crossover design. J Appl Stat 30(8):881–891 Pan W (2001) Akaike’s information criterion in generalized estimating equations. Biometrics 57:120–125 Patterson HD (1951) Change-over trials. Journal of the Royal Statistical Society. Series B (Methodological) 13, 256–271 Pitchforth J, Nelson-White E, van den Helder M, Oosting W (2020) The work environment pilot: an experiment to determine the optimal office design for a technology company. PLoS ONE 15(5):0232943 R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2022). R Foundation for Statistical Computing. https://www.R-project. org/ Ratkowsky D, Alldredge R, Evans MA (1992) Cross-over experiments. Statistics A Series of Textbooks and Monographs, Washington Rosenkranz GK (2015) Analysis of cross-over studies with missing data. Stat Methods Med Res 24(4):420– 433 Roy A, Khattree R (2005) On implementation of a test for Kronecker product covariance structure for multivariate repeated measures data. Stat Methodol 2(4):297–306 Shkedy Z, Molenberghs G, Craenendonck HV, Steckler T, Bijnens L (2005) A hierarchical binomial-Poisson model for the analysis of a crossover design for correlated binary data when the number of trials is dose-dependent. J Biopharm Stat 15(2):225–239 Srivastava MS, von Rosen T, Von Rosen D (2008) Models with a Kronecker product covariance structure: estimation and testing. Math Methods Stat 17(4):357–370 Vegas S, Apa C, Juristo N (2016) Crossover designs in software engineering experiments: benefits and perils. IEEE Trans Softw Eng 42(2):120–135 Wang X, Chinchilli VM (2021) Analysis of crossover designs with nonignorable dropout. Stat Med 40(1):64–84 Zhang H, Yu Q, Feng C, Gunzler D, Wu P, Tu X (2012) A new look at the difference between the gee and the glmm when modeling longitudinal count responses. J Appl Stat 39(9):2067–2079 Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf application/pdf Cundinamarca Bogotá C.I Tibaitatá Colombia Springer Nature Bogotá (Colombia) Statistical Papers (2022) 65:263–290 |