Genotype-environment interaction for production characteristics in cherry tomato (Solanum spp.)

Much of the tomato diversity is found in cherry-type populations. There are promising wild cherry tomato species with good behavior in terms of yield and quality that can be produced with a minimum of agroinputs. The genetic expression of genotypes is influenced by the optimal environment they can...

Full description

Bibliographic Details
Main Authors: Ceballos Aguirre, Nelson, Vallejo Cabrera, Franco Alirio, Morillo Coronado, Yacenia
Format: article
Language:Español
Published: Universidad Pedagógica y Tecnológica de Colombia - UPTC 2024
Subjects:
Online Access:https://revistas.uptc.edu.co/index.php/ciencias_horticolas/article/view/12608
http://hdl.handle.net/20.500.12324/38971
id RepoAGROSAVIA38971
record_format dspace
institution Corporación Colombiana de Investigación Agropecuaria
collection Repositorio AGROSAVIA
language Español
topic Arreglo y sistemas de cultivo - F08
Tomate
Adaptabilidad
Rendimiento
Ammi
Hortalizas y plantas aromáticas
http://aims.fao.org/aos/agrovoc/c_7805
http://aims.fao.org/aos/agrovoc/c_35024
http://aims.fao.org/aos/agrovoc/c_8488
http://aims.fao.org/aos/agrovoc/c_32810
spellingShingle Arreglo y sistemas de cultivo - F08
Tomate
Adaptabilidad
Rendimiento
Ammi
Hortalizas y plantas aromáticas
http://aims.fao.org/aos/agrovoc/c_7805
http://aims.fao.org/aos/agrovoc/c_35024
http://aims.fao.org/aos/agrovoc/c_8488
http://aims.fao.org/aos/agrovoc/c_32810
Ceballos Aguirre, Nelson
Vallejo Cabrera, Franco Alirio
Morillo Coronado, Yacenia
Genotype-environment interaction for production characteristics in cherry tomato (Solanum spp.)
description Much of the tomato diversity is found in cherry-type populations. There are promising wild cherry tomato species with good behavior in terms of yield and quality that can be produced with a minimum of agroinputs. The genetic expression of genotypes is influenced by the optimal environment they can develop in. The genotype-environment interaction must be known to estimate the phenotypic adaptability in different environments. The objective of this research was to evaluate the genotype-environment interaction for 10 cherry tomato introductions in nine environments, four of which were artificial environments (0, 60, 120 and 180 kg ha-1 of potassium) established in natural environments on the Farms Montelindo, Tesorito and CEUNP. The experiment design used randomized complete blocks with four replicates; the experiment unit consisted of five effective plants per introduction. The evaluated variables were production per plant (PFT) (kg/pl), number of fruits per plant (NFT), and average fruit weight (AWF) (g/fruit). The genotype×environment interaction and the stability of the 10 genotypes were estimated with the AMMI multivariate model. The environments for T120K and T180K were optimal for the variables associated with production (PFT, NFT and AWF), with IAC1621, IAC426 and IAC1624 being the most promising genotypes per environment on the Farms Tesorito, Montelindo and CEUNP, respectively. The results are useful for the identification of genotypes in key locations for selection and evaluation in breeding programs.
format article
author Ceballos Aguirre, Nelson
Vallejo Cabrera, Franco Alirio
Morillo Coronado, Yacenia
author_facet Ceballos Aguirre, Nelson
Vallejo Cabrera, Franco Alirio
Morillo Coronado, Yacenia
author_sort Ceballos Aguirre, Nelson
title Genotype-environment interaction for production characteristics in cherry tomato (Solanum spp.)
title_short Genotype-environment interaction for production characteristics in cherry tomato (Solanum spp.)
title_full Genotype-environment interaction for production characteristics in cherry tomato (Solanum spp.)
title_fullStr Genotype-environment interaction for production characteristics in cherry tomato (Solanum spp.)
title_full_unstemmed Genotype-environment interaction for production characteristics in cherry tomato (Solanum spp.)
title_sort genotype-environment interaction for production characteristics in cherry tomato (solanum spp.)
publisher Universidad Pedagógica y Tecnológica de Colombia - UPTC
publishDate 2024
url https://revistas.uptc.edu.co/index.php/ciencias_horticolas/article/view/12608
http://hdl.handle.net/20.500.12324/38971
work_keys_str_mv AT ceballosaguirrenelson genotypeenvironmentinteractionforproductioncharacteristicsincherrytomatosolanumspp
AT vallejocabrerafrancoalirio genotypeenvironmentinteractionforproductioncharacteristicsincherrytomatosolanumspp
AT morillocoronadoyacenia genotypeenvironmentinteractionforproductioncharacteristicsincherrytomatosolanumspp
_version_ 1808105413349998592
spelling RepoAGROSAVIA389712024-03-07T03:00:40Z Genotype-environment interaction for production characteristics in cherry tomato (Solanum spp.) Genotype-environment interaction for production characteristics in cherry tomato (Solanum spp.) Ceballos Aguirre, Nelson Vallejo Cabrera, Franco Alirio Morillo Coronado, Yacenia Arreglo y sistemas de cultivo - F08 Tomate Adaptabilidad Rendimiento Ammi Hortalizas y plantas aromáticas http://aims.fao.org/aos/agrovoc/c_7805 http://aims.fao.org/aos/agrovoc/c_35024 http://aims.fao.org/aos/agrovoc/c_8488 http://aims.fao.org/aos/agrovoc/c_32810 Much of the tomato diversity is found in cherry-type populations. There are promising wild cherry tomato species with good behavior in terms of yield and quality that can be produced with a minimum of agroinputs. The genetic expression of genotypes is influenced by the optimal environment they can develop in. The genotype-environment interaction must be known to estimate the phenotypic adaptability in different environments. The objective of this research was to evaluate the genotype-environment interaction for 10 cherry tomato introductions in nine environments, four of which were artificial environments (0, 60, 120 and 180 kg ha-1 of potassium) established in natural environments on the Farms Montelindo, Tesorito and CEUNP. The experiment design used randomized complete blocks with four replicates; the experiment unit consisted of five effective plants per introduction. The evaluated variables were production per plant (PFT) (kg/pl), number of fruits per plant (NFT), and average fruit weight (AWF) (g/fruit). The genotype×environment interaction and the stability of the 10 genotypes were estimated with the AMMI multivariate model. The environments for T120K and T180K were optimal for the variables associated with production (PFT, NFT and AWF), with IAC1621, IAC426 and IAC1624 being the most promising genotypes per environment on the Farms Tesorito, Montelindo and CEUNP, respectively. The results are useful for the identification of genotypes in key locations for selection and evaluation in breeding programs. Tomate-Solanum lycopersicum 2024-03-06T14:03:36Z 2024-03-06T14:03:36Z 2021 2021 article Artículo científico http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 https://revistas.uptc.edu.co/index.php/ciencias_horticolas/article/view/12608 2422-3719 http://hdl.handle.net/20.500.12324/38971 10.17584/rcch.2021v15i2.12608 reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA spa Revista Colombiana de Ciencias Hortícolas 15 2 1 11 Abdallah, R.A.B., S. Mokni-Tlili, A. NefzI, H.J. Khiared dine, and M. Daami-Remadi. 2016. Biocontrol of Fu sarium wilt and growth promotion of tomato plants using endophytic bacteria isolated from Nicotiana glauca organs. Biol. Control 97, 80-88. Doi: 10.1016/j. biocontrol.2016.03.005 AGRONET. 2021. Crops – Tomato. In: http://www.agro net.gov.co/estadistica/Paginas/default.aspx; consul ted: February, 2021. Al-Aysh, F.M. 2014. Genotype-environment interaction and phenotypic stability for fruit yield and its produc tive components of tomato. J. Recent Adv. Agric. 2, 219-226. Amjad, M., J. Akhtar, M. Anwar-Ui-Haq, S. Imran, and S. Jacobsen. 2014. Soil and foliar application of potas sium enhances fruit yield and quality of tomato un der salinity. Turk. J. Biol. 38, 208-218. Doi: 10.3906/ biy-1305-54 Armita, D., A.P. Rahayu, M.D. Maghfoer, and D.A.F. Fua di. 2017. Effect of potassium fertilization on the yield and quality of two tomato varieties. Biosci. Res. 14(4), 1150-1155. Balzarini, M.G. and J.A. Di Rienzo. 2003. Infogen: Softwa re para análisis estadísticos de marcadores genéticos. Facultad de Ciencias Agropecuarias. Universidad Na cional de Córdoba. Cordoba, Argentina Casals, J., A. Rivera, J. Sabaté, R. Romero del Castillo, and J. Simó. 2018. Cherry and fresh market tomatoes: differences in chemical, morphological, and sensory traits and their implications for consumer acceptan ce. Agronomy (Switzerland) 9(9), 1-18. Doi: 10.3390/ agronomy9010009 Crossa, J. 1990. Statistical analyses of multiloca tion trials. Adv. Agron. 44, 55-85. Doi: 10.1016/ S0065-2113(08)60818-4 Crossa, J., H.G. Gauch, and R.W. Zobel. 1990. Additive main effects and multiplicative interaction analysis of two international maize cultivar trials. Crop Sci. 30(3), 493-500. Doi: 10.2135/cropsci1990.0011183X0 03000030003x Eberhart, S. and W. Russel. 1966. Stability parameters for comparing varieties. Crop Sci. 6, 36-40. Doi: 10.2135/ cropsci1966.0011183X000600010011x FAO. 2021. FAOSTAT – Statis crops. In: www.faostat.org; consulted: April, 2021 Flores-Hernández, L.A., R. Lobato Ortíz, J.J. García Zavala, J.D. Molina Galán, D.M. Sargerman Jarquín, and M.D. Velasco Alvarado. 2017. Parientes silvestres del tomate como fuente de germoplasma para el mejoramiento genético de la especie. Rev. Fitotec. Mex. 40(1), 83-91. Doi: 10.35196/rfm.2017.1.83-91 Hernández-Leal, E., R. Lobato-Ortiz, J.J. García-Zavala, A. Hernández-Bautista, D. Reyes-López, and O. Bonil la-Barrientos. 2019. Stability and breeding potential of tomato hybrids. Chil. J. Agric. Res. 79(2), 181-189. Doi: 10.4067/S0718-58392019000200181 Hernández-Pérez, O.I., L.A. Valdez-Aguilar, I. Alia-Teja cal, A.D. Cartmill, and D.L. Cartmill. 2019. Tomato fruit yield, quality, and nutrient status in response to potassium: calcium balance and electrical conductivi ty in the nutrient solution. J. Soil Sci. Plant Nutr. 20, 484-492. Doi: 10.1007/s42729-019-00133-9 Herrera, H., S.A. Hurtado, and A.N. Ceballos. 2015. Estudio técnico y económico del tomate tipo cereza élite (Sola num lycopersicum L. var. Cerasiforme) bajo condiciones semicontroladas. Rev. Colomb. Cienc. Hortic. 9(2), 290-300. Doi: 10.17584/rcch.2015v9i2.4185 Jaramillo, J., V.P. Rodríguez, M. Guzmán, M. Zapata, and T. Rengifo. 2007. Buenas prácticas agrícolas en la pro ducción de tomate bajo condiciones protegidas. FAO, Gobernación de Antioquia, FAO-MANA, CORPOI CA, Medellin, Colombia. Khan, A.A., M. Sajid, A. Rab, S. Alam, and A. Bari. 2014. Effect of potassium sources on the growth, yield and fruit quality of tomato cultivars. Sarh. J. Agric. 30(4), 442-450. Machado, J., L. Braz, and G. Grilli. 2003. Desempenho de produção de cultivares de tomateiro tipo Cereja em diferentes espaçamentos (CD). Hortic. Bras. 21(2), 356-356. Medina, C.I. and M. Lobo. 2001. Variabilidad morfológica en el tomate pajarito (Lycopersicon esculentum var. Ce rasiforme), precursor del tomate cultivado. Corpoica Cienc. Tecnol. Agropecu. 3(2), 39-50. Doi: 10.21930/ rcta.vol3_num2_art:186 Mohamed, A.G., A.M. Ahmed, and R.M. Galal. 2013. Geno typic and phenotypic stability for new lines of toma to (Solanum lycopersicum L.). Assiut J. Agric. Sci. 44(2), 105-123. Mohammadi, M., T. Hosseinpourt, M. Armion, H. Khan zadeh, and H. Ghojogh. 2016. Analysis of genotype, environment and genotype × environment interac tion in bread wheat genotypes using GGE Biplot. Agri. Communi. 4(3), 1-8. Nowosad, K., A. Liersch, W. Popławska, and J. Bocianowski. 2016. Genotype by environment interaction for seed yield in rapeseed (Brassica napus L.) using additive main effects and multiplicative interaction model. Eu phytica 208, 187-194. Doi: 10.1007/s10681-015-1620 Panthee, D.R., C. Cao, S.J. Debenport, G.R. Rodriguez, J.A. Labate, L.D. Robertson, A.P. Breksa, E.V.D. Knaap, and B.B.M. Gardner. 2012. Magnitude of genotype x environment interactions affecting tomato fruit quality. HortScience 47(6), 721-726. Doi: 10.21273/ HORTSCI.47.6.721 Parga, T.V.M., V.V.M. Zamora, V.V.M. González, G.S.J. Gar cía, and G.E.E. Villavicencio. 2005. Interacción geno tipo por ambiente en clones de papa bajo riego en el noreste de México. Agric. Téc. Méx. 31(1), 55-64. Prasanna, H.C., T. Chaubey, R. Kumar, M. Rai, A. Verma, and S. Singh. 2007. Identification of stable variety for yield and quality attributes in tomato. Veg. Sci. 34, 131-134. Sánchez, A., E.F. Borrego, V.V. Zamora, C.J. Sánchez, and R.F. Castillo. 2015. Estimación de la interacción geno tipo-ambiente en tomate (Solanum lycopersicum L.) con el modelo AMMI. Rev. Mex. Cienc. Agríc. 6(4), 763- 778. Doi: 10.29312/remexca.v6i4.617 SAS Institute. 1992. User’s guide v. 9.1. Cary, NC. Savale, S.V. and A.I. Patel. 2017. Stability analysis for yield and quality attributes in tomato (Solanum lycopersicum L.). J. Pharmacogn. Phytochem. 6(6), 637-642. Shankar, A., R.V.S.K. Reddy, P. Saidaiah, K. Uma Krishna, and K. Uma Jyothi. 2017. Study of stability analysis for yield and quality in tomato (Solanum lycopersicum L.) over the seasons. J. Entomol. Zool. Stud. 5(5), 505-509. Srinivas, C., D. Nirmala, K. Narasimha Murthy, C.D. Mo han, T.R. Lakshmeesha, B. Singh, N.K. Kalagatur, S.R. Niranjana, A. Hashem, A.A. Alqarawi, B. Tabassum, E.F. Abd-Allah, S. Chandra Nayaka, and R.K. Srivas tava. 2019. Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: Biology to di versity – A review. Saudi J. Biol. Sci. 26(7), 1315-1324. Doi: 10.1016/j.sjbs.2019.06.002 Steel, R.G.D. and J.H. Torrie. 1997. Principles and procedu res of statistics. A biometrical approach. 3rd ed. Mc Graw-Hill, New York, N Tonk, F.A., E. Ilker, and M. Tosun. 2011. Evaluation of ge notype x environment interactions in maize hybrids using GGE biplot analysis. Crop. Breed. Appl. Biot. 11(1), 1-9. Doi: 10.1590/S1984-70332011000100001 Wardofa, G., D. Asnake, and H. Mohammed. 2019. GGE bi plot analysis of genotype-by-environment interaction and grain yield stability of bread wheat genotypes in South Tigray, Ethiopia. J. Plant Breed. Genet. 7(2), 75- 85. Doi: 10.33687/pbg.007.02.2846 Weinert, C.H., F. Sonntag, B. Egert, E. Pawelzik, S.E. Ku lling, and I. Smit. 2021. The effect of potassium fer tilization on the metabolite profile of tomato fruit (Solanum lycopersicum L.). Plant Physiol. Biochem. 159, 89-99. Doi: 10.1016/j.plaphy.2020.12.010 Woldemariam, S.H., S. Lal, D.Z. Zelelew, and M.T. Solo mon. 2018. Effect of potassium levels on productivity and fruit quality of tomato (Lycopersicon esculentum L.). J. Agric. Stud. 6(1), 104. Doi: 10.5296/jas.v6i1.12262 Zakher, A.G., S.A.A. Abu El-kasem, and F.H. Ayoub. 2016. Assessment of the stability and adaptability of some newly promising tomato (Solanum lycopersicum L.) lines under different environmental conditions. J. Plant Prod. Mansoura Univ. 7(12), 1331-1337. Doi: 10.21608/jpp.2016.47031 Zayed, A.A., F.A. Helal, and S.T. Farag. 2005. The ge netic performance of some continuously variable characteristics of pea under different locations. Ann. Agric. Sci. Moshtohor. 43(1), 337-346 Zörb, C., M. Senbayram, and E. Peiter. 2014. Potassium in agriculture – status and perspectives. J. Plant Physiol. 171(9), 656-669. Doi: 10.1016/j.jplph.2013.08.008 Attribution-ShareAlike 4.0 International http://creativecommons.org/licenses/by-sa/4.0/ application/pdf application/pdf Colombia Universidad Pedagógica y Tecnológica de Colombia - UPTC Bogotá (Colombia) Revista Colombiana de Ciencias Hortícolas; Vol. 15, Núm. 2 (2021): Revista Colombiana de Ciencias Hortícolas (Mayo-Agosto);p. 1 -11.