Risk Reduction and Productivity Increase Through Integrating Arachis pintoi in Cattle Production Systems in the Colombian Orinoquía

In many parts of the foothills of the Orinoquía region of Colombia, cattle production takes place on poorly drained soils. The region is dominated by extensive grazing systems of Brachiaira humidicola cv. Humidicola, a grass with high adaptation potential under temporal waterlogging conditions. Inad...

Full description

Bibliographic Details
Main Authors: Rincon Castillo, Alvaro, Ruden, Daniel Alejandro, Burkart, Stefan, Enciso Valencia, Karen Johanna
Format: article
Language:Español
Published: Arachis pintoi in Cattle Systems 2024
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fsufs.2021.666604
http://hdl.handle.net/20.500.12324/38930
id RepoAGROSAVIA38930
record_format dspace
institution Corporación Colombiana de Investigación Agropecuaria
collection Repositorio AGROSAVIA
language Español
topic Meteorología y climatología - P40
Cambio climático
Leguminosas forrajeras
Análisis de riesgos
Cambio de uso de la tierra
Ganadería y especies menores
http://aims.fao.org/aos/agrovoc/c_1666
http://aims.fao.org/aos/agrovoc/c_2834
http://aims.fao.org/aos/agrovoc/c_37936
http://aims.fao.org/aos/agrovoc/c_fac4b794
spellingShingle Meteorología y climatología - P40
Cambio climático
Leguminosas forrajeras
Análisis de riesgos
Cambio de uso de la tierra
Ganadería y especies menores
http://aims.fao.org/aos/agrovoc/c_1666
http://aims.fao.org/aos/agrovoc/c_2834
http://aims.fao.org/aos/agrovoc/c_37936
http://aims.fao.org/aos/agrovoc/c_fac4b794
Rincon Castillo, Alvaro
Ruden, Daniel Alejandro
Burkart, Stefan
Enciso Valencia, Karen Johanna
Risk Reduction and Productivity Increase Through Integrating Arachis pintoi in Cattle Production Systems in the Colombian Orinoquía
description In many parts of the foothills of the Orinoquía region of Colombia, cattle production takes place on poorly drained soils. The region is dominated by extensive grazing systems of Brachiaira humidicola cv. Humidicola, a grass with high adaptation potential under temporal waterlogging conditions. Inadequate management practices and low soil fertility result in degradation, however, with important negative effects on pasture productivity and the quality and provision of (soil) ecosystem services–a situation that is likely to worsen in the near future due to climate change. Against this background, AGROSAVIA (Corporación Colombiana de Investigación Agropecuaria) selected Arachis pintoi CIAT 22160 cv. Centauro (Centauro) as a promising alternative for the sustainable intensification of livestock production and rehabilitation of degraded areas. This study assesses dual-purpose milk production in the foothills of the Colombian Orinoquía from an economic perspective. We compare two production systems: the Centauro–Brachiaira humidicola cv. Humidicola association (new system) and Brachiaira humidicola cv. Humidicola as a monoculture (traditional system). We used cashflow and risk assessment models to estimate economic indicators. The projections for economic returns consider changes in forage characteristics under regional climate change scenarios RCP (2.6, 8.5). The LIFE-SIM model was used to simulate dairy production. Results show that the inclusion of Centauro has the potential to increase animal productivity and profitability under different market scenarios. The impact of climatic variables on forage production is considerable in both climate change scenarios. Both total area and potential distribution of Centauro could change, and biomass production could decline. Brachiaira humidicola cv. Humidicola showed better persistence due to higher nitrogen levels in soil when grown in association with Centauro. The legume also provides a number of ecosystem services, such as improving soil structure and composition, and also contributes to reducing greenhouse gas emissions. This helps to improve the adaptation and mitigation capacity of the system.
format article
author Rincon Castillo, Alvaro
Ruden, Daniel Alejandro
Burkart, Stefan
Enciso Valencia, Karen Johanna
author_facet Rincon Castillo, Alvaro
Ruden, Daniel Alejandro
Burkart, Stefan
Enciso Valencia, Karen Johanna
author_sort Rincon Castillo, Alvaro
title Risk Reduction and Productivity Increase Through Integrating Arachis pintoi in Cattle Production Systems in the Colombian Orinoquía
title_short Risk Reduction and Productivity Increase Through Integrating Arachis pintoi in Cattle Production Systems in the Colombian Orinoquía
title_full Risk Reduction and Productivity Increase Through Integrating Arachis pintoi in Cattle Production Systems in the Colombian Orinoquía
title_fullStr Risk Reduction and Productivity Increase Through Integrating Arachis pintoi in Cattle Production Systems in the Colombian Orinoquía
title_full_unstemmed Risk Reduction and Productivity Increase Through Integrating Arachis pintoi in Cattle Production Systems in the Colombian Orinoquía
title_sort risk reduction and productivity increase through integrating arachis pintoi in cattle production systems in the colombian orinoquía
publisher Arachis pintoi in Cattle Systems
publishDate 2024
url https://www.frontiersin.org/article/10.3389/fsufs.2021.666604
http://hdl.handle.net/20.500.12324/38930
work_keys_str_mv AT rinconcastilloalvaro riskreductionandproductivityincreasethroughintegratingarachispintoiincattleproductionsystemsinthecolombianorinoquia
AT rudendanielalejandro riskreductionandproductivityincreasethroughintegratingarachispintoiincattleproductionsystemsinthecolombianorinoquia
AT burkartstefan riskreductionandproductivityincreasethroughintegratingarachispintoiincattleproductionsystemsinthecolombianorinoquia
AT encisovalenciakarenjohanna riskreductionandproductivityincreasethroughintegratingarachispintoiincattleproductionsystemsinthecolombianorinoquia
_version_ 1808107428284203008
spelling RepoAGROSAVIA389302024-02-23T03:02:07Z Risk Reduction and Productivity Increase Through Integrating Arachis pintoi in Cattle Production Systems in the Colombian Orinoquía Rincon Castillo, Alvaro Ruden, Daniel Alejandro Burkart, Stefan Enciso Valencia, Karen Johanna Meteorología y climatología - P40 Cambio climático Leguminosas forrajeras Análisis de riesgos Cambio de uso de la tierra Ganadería y especies menores http://aims.fao.org/aos/agrovoc/c_1666 http://aims.fao.org/aos/agrovoc/c_2834 http://aims.fao.org/aos/agrovoc/c_37936 http://aims.fao.org/aos/agrovoc/c_fac4b794 In many parts of the foothills of the Orinoquía region of Colombia, cattle production takes place on poorly drained soils. The region is dominated by extensive grazing systems of Brachiaira humidicola cv. Humidicola, a grass with high adaptation potential under temporal waterlogging conditions. Inadequate management practices and low soil fertility result in degradation, however, with important negative effects on pasture productivity and the quality and provision of (soil) ecosystem services–a situation that is likely to worsen in the near future due to climate change. Against this background, AGROSAVIA (Corporación Colombiana de Investigación Agropecuaria) selected Arachis pintoi CIAT 22160 cv. Centauro (Centauro) as a promising alternative for the sustainable intensification of livestock production and rehabilitation of degraded areas. This study assesses dual-purpose milk production in the foothills of the Colombian Orinoquía from an economic perspective. We compare two production systems: the Centauro–Brachiaira humidicola cv. Humidicola association (new system) and Brachiaira humidicola cv. Humidicola as a monoculture (traditional system). We used cashflow and risk assessment models to estimate economic indicators. The projections for economic returns consider changes in forage characteristics under regional climate change scenarios RCP (2.6, 8.5). The LIFE-SIM model was used to simulate dairy production. Results show that the inclusion of Centauro has the potential to increase animal productivity and profitability under different market scenarios. The impact of climatic variables on forage production is considerable in both climate change scenarios. Both total area and potential distribution of Centauro could change, and biomass production could decline. Brachiaira humidicola cv. Humidicola showed better persistence due to higher nitrogen levels in soil when grown in association with Centauro. The legume also provides a number of ecosystem services, such as improving soil structure and composition, and also contributes to reducing greenhouse gas emissions. This helps to improve the adaptation and mitigation capacity of the system. 2024-02-22T20:56:31Z 2024-02-22T20:56:31Z 2021-10-04 2021 article Artículo científico http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 https://www.frontiersin.org/article/10.3389/fsufs.2021.666604 2571-581X http://hdl.handle.net/20.500.12324/38930 10.3389/fsufs.2021.666604 reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA spa Frontiers in Sustainable Food Systems 5 5 1 349 Abril, D. S., Melo, L. F., and Parra, D. (2017). “Impactos de los fenómenos climáticos sobre el precio de los alimentos en Colombia,” in El desarrollo equitativo, competitivo y sostenible del sector agropecuario en Colombia, eds C. G. Cano, A. M. Iregui, M. T. Ramirez, and A. M. Tribin (Caracas: Banco de Desarrollo de América Latina), 315–347. Amézquita, M. C., Ibrahim, M., Llanderal, T., Buurman, P., and Amézquita, E. (2004). Carbon sequestration in pastures, silvo-pastoral systems and forests in four regions of the latin American tropics. J. Sustain. For. 21, 31–49. doi: 10.1300/J091v21n01_02 Armenta, G., Dorado, J., Rodríguez, A., and Ruiz, J. (2015). Escenarios de cambio climático para precipitación y temperaturas en Colombia. Instituto de Hidrología, Meteorología y Estudios Ambientales de Colombia IDEAM. Available online at: http://documentacion.ideam.gov.co/cgi-bin/koha/opac-detail.pl?biblionumber=37489 (accessed January 15, 2021). Bancolombia–Dirección de Investigaciones Económicas, Sectoriales y de Mercados. (2020). Actualización de proyecciones económicas para Colombia–segundo trimestre de 2020. Available online at: https://www.shorturl.at (accessed February 05, 2020). Boddey, R. M., Casagrande, D. R., Homem, B. G. C., and Alves, B. J. R. (2020). Forage legumes in grass pastures in tropical Brazil and likely impacts on greenhouse gas emissions: a review. Grass Forage Sci. 75, 1–15. doi: 10.1111/gfs.12498 Cárdenas, E. A., Maass, B. L., Peters, M., and Franco, L. H. (1999). Evaluación de germoplasma nuevo de Arachis pintoi en Colombia. 2. Bosque muy húmedo–Premontano (Zona cafetera), Caldas. Past. Trop. 21, 42–59. Castillo-Gallegos, E., Mannetje, L., and Aluja-Schunemann, A. (2005). Production and persistence of a native pasture-Arachis pintoi association in the humid tropics of Mexico. Trop. Grassl. 39. Available online at: https://www.tropicalgrasslands.info/index.php/tgft/pages/view/tropicalGrasslands CIAT (1994). Programa de Forrajes Tropicales-Informe Anual 1994. Cali: Centro Internacional de Agricultura Tropical (CIAT). Available online at: https://cgspace.cgiar.org/handle/10568/69061?show=full (accessed April 21, 2021). CIAT (2002). Tropical Grasses and Legumes: Optimizing genetic Diversity for Multipurpose Use (Project IP5). Cali: Centro Internacional de Agricultura Tropical (CIAT). Available online at: hdl.handle.net/10568/69061 (accessed September 14, 2021). CIAT (2004). Tropical Grasses and Legumes: Optimizing genetic Diversity for Multipurpose Use (Project IP5). Annual Report 2004. Cali: Centro Internacional de Agricultura Tropical. Available online at: hdl.handle.net/10568/69061 (accessed September 14, 2021). CIAT and CORMACARENA (2018). Plan regional integral de cambio climático para la Orinoquía. CIAT publicación No. 438. Cali: Centro Internacional de Agricultura Tropical (CIAT). Crestani, S., Mendonça, H., Ribeiro, F. N., Frederico, M. M., Almeida, E. X., and Portela, F. A. (2013). Steers performance in dwarf elephant grass pastures alone or mixed with Arachis pintoi. Trop. Anim. Health Prod. 45, 1369–1374. doi: 10.1007/s11250-013-0371-x DANE (2020a). Data from: Productividad Total de los Factores (PTF). Available online at: https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentasnacionales/ productividad (accessed September 14, 2021). DANE (2020b). Data from: Índice de precios al Productor (IPP). Available online at: https://www.dane.gov.co/index.php/estadisticas-por-tema/preciosy- costos/indice-de-precios-del-productor-ipp (accessed September 14, 2021). DANE (2020c). Data from: Índice de precios al consumidor (IPC). Available online at: https://www.dane.gov.co/index.php/estadisticas-por-tema/preciosy- costos/indice-de-precios-al-consumidor-ipc/ipc-historico (accessed September 14, 2021). Dickie, A., Streck, C., Roe, S., Zurek, M., Haupt, F., and Dolginow, A. (2014). Strategies for Mitigating Climate Change in Agriculture: Abridged Report. Climate Focus and California environmental Associates, Prepared With the Support of the Climate and Land Use Alliance. Available online at: https://www.climateandlandusealliance.org/reports/strategies-formitigating- climate-change-in-agriculture/ (accessed December 20, 2020). Dubeux, J. C. B., Blount, A. R. S., Mackowiak, C., Santos, E. R. S., Pereira-Neto, J. D., Riveros, U., et al. (2017). Biological N2 fixation, belowground responses, and forage potential of rhizoma peanut cultivars. Crop Sci. 57, 1027–1038. doi: 10.2135/cropsci2016.09.0810 FAO (2016). El Estado de los bosques del mundo 2016. Roma: Los bosques y la agricultura: desafíos y oportunidades en relación con el uso de la tierra. FEDEGAN (2003). Índice de costos ganaderos diciembre 2002–marzo 2003. Carta Fedegán Magazine No. 79. Bogotá: Federación Colombiana de Ganaderos, 17–32. FEDEGAN (2018). Ganadería Colombiana Hoja De Ruta 2018–2022. Bogotá: FEDEGAN. Fisher, M. J., Rao, I. M., Ayarza, M. A., Lascano, C. E., Sanz, J. I., Thomas, R. J., et al. (1994). Carbon storage by introduced deep-rooted grasses in the South American savannas. Nature 371, 236–238. doi: 10.1038/371236a0 Fonte, S. J., Nesper, M., Hegglin, D., Velásquez, J. E., Ramirez, B., Rao, I. M., et al. (2014). Pasture degradation impacts soil phosphorus storage via changes to aggregate-associated soil organic matter in highly weathered tropical soils. Soil Biol. Biochem. 68, 150–157. doi: 10.1016/j.soilbio.2013.09.025 Galdino, S., Sano, E. E., Andrade, R.G., Grego, C. R.,Nogueira, S. F., Bragantini, C., et al. (2015). Large-scale modeling of soil erosion with rusle for conservationist planning of degraded cultivated Brazilian pastures. Land Degrad. Dev. 27, 773–784. doi: 10.1002/ldr.2414 Garnett, T. (2009). Livestock-related Greenhouse Gas Emissions: impacts and options for policy makers. Environ. Sci. Policy 12, 491–503. doi: 10.1016/j.envsci.2009.01.006 GBIF.org (2020). GBIF Occurrence. Available online at: https://doi.org/10.15468/ dl.wvj4tj (accessed June 02, 2020). Gibbs, H. K.,Munger, J., L’Roe, J., Barreto, P., Pereira, R., Christie,M., et al. (2015). Did ranchers and slaughterhouses respond to zero deforestation agreements in the Brazilian Amazon? Conserv. Lett. 9, 32–42. doi: 10.1111/conl.12175 Henry, B., Charmley, E., Eckard, R., Gaughan, J. B., and Hegarty, R. (2012). Livestock production in a changing climate: adaptation and mitigation research in Australia. Crop Past. Sci. 63, 191–202. doi: 10.1071/CP11169 Holmann, F. (2004). “Potential benefits of new forage germplasm in dual-purpose cattle systems in the dry tropics,” in Feeding Systems With Forage Legumes to Intensify dairy Production in Latin America and the Caribbean-A Project Holmann, F. (2004). “Potential benefits of new forage germplasm in dual-purpose cattle systems in the dry tropics,” in Feeding Systems With Forage Legumes to Intensify dairy Production in Latin America and the Caribbean-A Project Executed by the Tropileche Consortium, eds F. Holmann and C. Lascano (h ttps://www.google.com/search?sxsrf=AOaemvIjDC_c2FIZ_-CAz1wW7vh QfNP8DA:1631316354048&q=Cali,+Colombia&stick=H4sIAAAAAAAAA OPgE-LUz9U3MDFPtyxWAjMNC4qL07SMMsqt9JPzc3JSk0sy8_P084vSE _MyqxJBnGKrjNTElMLSxKKS1KJihZz8ZLDwIlY-58ScTB0F5_yc_NykzM QdrIwA8gbAbWAAAAA&sa=X&ved=2ahUKEwir_bH-xvXyAhUbOisKH faTDKsQmxMoAXoECC4QAw Cali: Centro Internacional de Agricultura Tropical-CIAT), 114–131. ICA (1987). Pasto Llanero Brachiaria dictyoneura. Boletín técnico No. 151. Villavicencio: ICA. Available online at: http://ciat-library.ciat.cgiar. org/forrajes_tropicales/Released/Materiales/PastoLlaneroC.pdf (accessed December 15, 2020). IDEAM, PNUD,MADS, DNP, and Cancillería (2015). Nuevos escenarios de cambio climático para Colombia 2011–2100 Herramientas Científicas para la Toma de Decisiones–Enfoque Nacional–Departamental: Tercera Comunicación Nacional de Cambio Climático. Bogotá: Instituto de Hidrología, Meteorología y Estudios Ambientales de Colombia (IDEAM). Jansen, H. G. P., Ibrahim, M. A., Nieuwenhuyse, A., ’t Mannetje, L., Joenje, M., and Abarca, S. (1997). The economics of improved pasture and silvopastoral technologies in the Atlantic zone of Costa Rica. Trop. Grassl. 31, 588–598. Jensen, E. S., Peoples, M. B., Boddey, R. M., Gresshoff,., P. M., Hauggard-Nielsen, H., et al. (2012). Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. a review. Agron. Sustain. Dev. 32, 329–364. doi: 10.1007/s13593-011-0056-7 Kaimowitz, D., and Angelsen, A. (2008). Will livestock intensification help save latin America’s tropical forests? J. Sustain. For. 27, 6–24. doi: 10.1080/10549810802225168 Lara, D., and Reategui, K. (2004). “Effect of associating Brachiaria brizantha with Arachis pintoi on milk yield,” in Feeding Systems With Forage Legumes to Intensify Dairy Production in Latin America and the Caribbean: A Project Executed by the Tropileche Consortium, eds. F. Holmann and C.E. Lascano (Cali: Centro Internacional de Agricultura Tropical, Tropileche Consortium; Addis Ababa: System-wide Livestock Programme; Nairobi: International Livestock Research Institute), 67–68. Lascano, C. (1994). “Nutritive value and animal production of forage Arachis,” in Biology and Agronomy of Forage Arachis, eds P. C. Kerridge and B. Hardy (Cali: Centro Internacional de Agricultura Tropical (CIAT)), 109–121. Lascano, C. E., Peters, M., and Holmann, F. (2005). Arachis pintoi in the humid tropics of Colombia: a forage legume success story. Trop. Grassl. 39:220. Available online at: https://www.tropicalgrasslands.info/index.php/tgft/pages/ view/tropicalGrasslands (accessed April 17, 2021). León-Velarde, C., Cañas, R., Quiroz, R., Osorio, J., Guerrero, J., and Pezo, D. (2006). LIFE-SIM: Livestock Feeding Strategies Simulation Models. Lima: International Potato Center (CIP). https://bit.ly/3nBVWVD (Accessed December, 12, 2020). MADR/USP (2020). Precio pagado al productor Res 0017 de 2002. Available online at: http://uspleche.minagricultura.gov.co/ (accessed June 12, 2020). Marra, M., Pannell, D. J., and Abadi Ghadim, A. (2003). The economics of risk, uncertainty and learning in the adoption of new agricultural technologies: where are we on the learning curve? Agric. Syst.75, 215–234. doi: 10.1016/S0308-521X(02)00066-5 Melo, S., Riveros, L., Romero, G., Álvarez, A., and Diaz, C., Calderón, S. (2017). Efectos económicos de futuras sequías en Colombia: Estimación a partir del Fenómeno El Niño 2015. Arch. Econ. 466, 1–34. Available online at: https://colaboracion.dnp.gov.co/CDT/Estudios%20Econmicos/466. pdf (accessed September 14, 2021). Moreno, I. R., Maass, B. L., Peters, M., and Cárdenas, E. A. (1999). Evaluación de germoplasma nuevo de Arachis pintoi en Colombia. 1. Bosque seco tropical, Valle del Cauca. Past. Trop. 21:18–32. Available online at: https://www. tropicalgrasslands.info/index.php/tgft/pages/view/Pasturas Moreta, D. E., Arango, J., Sotelo, M., Vergara, D., Rincón, A., Ishitani, M., et al. (2014). Biological nitrification inhibition (BNI) in Brachiaria pastures: a novel strategy to improve eco-efficiency of crop-livestock systems and to mitigate climate change. Trop. Grassl. 2, 88–91. doi: 10.17138/TGFT(2)88-91 Murgueitio, E., Calle, Z., Uribe, F., Calle, A., and Solorio, B. (2011). Native trees and shrubs for the productive rehabilitation of tropical cattle ranching lands. For. Ecol. Manage. 261, 1654–1663. doi: 10.1016/j.foreco.2010.09.027 Nardone, A., Ronchi, B., Lacetera, N., Ranieri, M. S., and Bernabucci, U. (2010). Effects of climate changes on animal production and sustainability of livestock systems. Livest. Sci. 130, 57–69. doi: 10.1016/j.livsci.2010.02.011 Navarro-Racines, C., Tarapues, J., Thornton, P., Jarvis, A., and Ramirez-Villegas, J. (2020). High-resolution and bias-corrected CMIP5 projections for climate change impact assessments. Sci. Data 7:7. doi: 10.1038/s41597-019-0343-8 OECD/FAO (2020). OECD-FAO Agricultural Outlook 2020-2029. Paris: FAO, Rome/OECD Publishing. Olsson, L., Barbosa, H., Bhadwal, S., Cowie, A., Delusca, K., Flores-Renteria, D., et al. (2019). “Land degradation,” in Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems, eds P. R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley (Geneva: Intergovernmental Panel on Climate Change), 345–436. Available online at: https://www.ipcc.ch/site/assets/uploads/sites/4/2019/11/ 07_Chapter-4.pdf (accessed September 14, 2021). Pannell, D. J., Marshall, G. R., Barr, N., Curtis, A., and Vanclay,. F. W. R. (2006). Understanding and promoting adoption of conservation practices by rural landholders. Aust. J. Exp. Agric. 43, 1407–1424. doi: 10.1071/EA0 5037 Park, C. S. (2007). Contemporary Engineering Economics, 4th Edn. Upper Saddle River, NJ: Prentice Hall. Peñuela, L., Fernández, A. P., Castro, F., and Ocampo, A. (2011). Uso y manejo de forrajes nativos en la sabana inundable de la Orinoquía. Convenio de cooperación interinstitucional entre The Nature Conservancy (TNC) y la Fundación Horizonte Verde (FHV) con el apoyo de la Fundación Biodiversidad de España y la Corporación Autónoma Regional de la Orinoquía (CorpOrinoquía) (Bogota, DC). 66. Peñuela, L., Solano, C., Ardila, V., and Galán, S. (2014). Sabana inundable y ganadería, opción productiva de conservación en la Orinoquia. Bogotá: Asociación Red Colombiana de Reservas Naturales de la Sociedad Civil, Fundación Natura, World Wildlife Fund, The Nature Conservancy, y Parques Nacionales Naturales de Colombia. Pereira, J. M., Rezende, C. P., Ferreira, A. M., Homem, B. G. C., Casagrande, D. R., Macedo, T. M., et al. (2019). Production of beef cattle grazing on Brachiaria brizantha (Marandu grass)—Arachis pintoi (forage peanut cv. Belomonte) mixtures exceeded that on grass monocultures fertilized with 120 kg N/ha. Grass Forage Sci. 75, 28–36. doi: 10.1111/gfs. 12463 Peters, M., Franco, L., Schmidt, A., and Hincapié, B. (2011). Especies Forrajeras Multipropósito: Opciones para productores del trópico americano. Cali: Centro Internacional de Agricultura Tropical (CIAT); Bundesministerium für Wirtschaftliche Zusammenarbeit und Entwicklung (BMZ); Deutsche Gesellschaft für Technische Zusammenarbeit (GIZ). Peters, M., Horne, P., Schmidt, A., Holmann, F., Kerridge, P. C., Tarawali, S. A., et al. (2001). The Role of Forages in Reducing Poverty and Degradation of Natural Resources in Tropical Production Systems. Agricultural Research and Extension Network. Network Paper No. 117. Available online at: https://cdn.odi. org/media/documents/5218.pdf (accessed September 14, 2021). Peters, M., Maass, B. L., Franco, L. H., and Cárdenas, E. A. (2000). Evaluación de germoplasma nuevo de Arachis pintoi en Colombia. 3. Bosque muy húmedo tropical–Piedemonte amazónico, Caquetá. Past. Trop. 22, 2–28. Available online at: http://ciat-library.ciat.cgiar.org/Articulos_Ciat/PAST2221. pdf (accessed September 14, 2021). Phillips, S.J., Dudík, M., Schapire, R.E. (2021). Maxent software for modeling species niches and distributions (Version 3.4.1). Available online at: http:// biodiversityinformatics.amnh.org/open_source/maxent/ (accessed October 02, 2020). Presidência da República (2012). Lei N◦ 12.651, de 25 de maio de 2012. Dispõe sobre a proteção da vegetação nativa e dá outras providências. Presidência da República. Available online at: http://www.planalto.gov.br/ccivil_03/_ato2011- 2014/2012/lei/L12651compilado.htm (accessed April 24, 2021). Rao, I., Van der Hoek, R., Peters, M., and Castro, A. (2014). Tropical foragebased systems for climate-smart livestock production in Latin America.Rural 21, 12–15. Available online at: https://www.biopasos.com/biblioteca/74v %20rural2014_04-S12-15.pdf (accessed September 14, 2021). Reid, R. S., Bedelian, C., Said, M. Y., Kruska, R. L., Mauricio, R. M., Castel, V., et al. (2010). “Global livestock impacts on biodiversity,” in Livestock in a Changing Landscape, Volume 1. Drivers, Consequences, and Responses, eds H. Steinfeld, H. A. Mooney, F. Schneider, L. E. Neville (Washington, DC: Island Press), 111–137. Available online at: https://hdl.handle.net/10568/2532 (accessed September 14, 2021). Riesco, A., and Seré, C. (1985). “Análisis económico de resultados de las pruebas de pastoreo,” in Evaluación de pasturas con animales. Alternativas metodológicas. Memorias de una reunión celebrada en Perú 1-5 de octubre, 1984, eds C. Lascano and E. Pizarro (Lima: Red Internacional de Evaluación de Pastos Tropicales), 201–232. Rincón, A. (1999). Maní forrajero (Arachis pintoi), la leguminosa para sistemas sostenibles de producción agropecuaria. Bogotá: Corporación Colombiana de Investigación Agropecuaria–Agrosavia. Available online at: http://hdl.handle. net/11348/4114 (accessed September 14, 2021). Rincón, A. (2001). Potencial productivo de ecotipos de Arachis pintoi en el Piedemonte de los Llanos Orientales de Colombia. Past. Trop. 23, 19–24. Available online at: https://www.tropicalgrasslands.info/index.php/tgft/pages/ view/Pasturas (accessed September 14, 2021). Rincón, A., Bueno, G., Diaz, R. A., Burkart, S., and Enciso, K. (2020). Cultivar Centauro (Arachis pintoi CIAT 22160): leguminosa forrajera para sistemas de ganadería sostenible. Bogotá: Corporación Colombiana de Investigación Agropecuaria (Agrosavia). Rincón, A., Cuesta, P. A., Pérez, R., Lascano, C. E., and Ferguson, J. (1992). Maní Forrajero Perenne (Arachis pintoi Krapovickas y Gregory) Una Alternativa para Ganaderos y Productores. Cali: Centro Internacional de Agricultura Tropical (CIAT). Available online at: http://ciat-library.ciat.cgiar.org/forrajes_ tropicales/pdf/Leaflets/arachis_colombia.pdf (accessed September 14, 2021). Rincón, A., Flórez, H., Ballesteros, H., and León, L. M. (2018). Efectos de la fertilización en la productividad de una pastura de Brachiaria humidicola cv. Llanero en el Piedemonte de los Llanos Orientales de Colombia. Trop. Grassl. 6, 158–168. doi: 10.17138/tgft(6)158-168 Rincón, A., and Pesca, A. (2017). Productividad animal de una leguminosa forrajera seleccionada para pastoreo en suelos con drenaje deficiente (Unpublished report). Bogotá: Corporación colombiana de investigación agropecuaria (Agrosavia). Rivas, L., and Holmann, F. (2000). Early adoption of Arachis pintoi in the humid tropics: the case of dual-purpose livestock systems in Caquetá, Colombia. Livest. Res. Rural Dev. 12:23. Available online at: http://www.lrrd.org/lrrd12/ 3/riva123.htm (accessed September 14, 2021). Robertson, A. D. (2005). “Forage Arachis in Nepal: a simple success,” in Proceedings of the XX International Grassland Congress: Offered papers (Dublin), 214. Available online at: https://www.tropicalgrasslands.info/public/ journals/4/Historic/Tropical%20Grasslands%20Journal%20archive/PDFs/ Vol_39_2005/Vol_39_04_2005_pp214_214.pdf (accessed September 14, 2021) Rojas-Downing,M., Pouyan, A., Harrigan, T., andWoznicki, S. A. (2017). Climate change and livestock: impacts, adaptation, and mitigation. Clim. Risk Manag. 16, 145–163. doi: 10.1016/j.crm.2017.02.001 Romero, F., and González, J. (2004). “Effects of Brachiaria decumbens alone and associated with Arachis pintoi on milk production and milk components,” in Feeding systems with forage legumes to intensify dairy production in Latin America and the Caribbean-A project executed by the Tropileche Consortium, eds Holmann and Lascano (Cali: Centro Internacional de Agricultura Tropical), 5–11. Available online at: http://hdl.handle.net/10568/830 (accessed September 14, 2021). Sattler, D., Seliger, R., Nehren, U., Naegeli, F., Soares da Silva, A., Raedig, C., et al. (2018). “Pasture degradation in south east brazil: status, drivers and options for sustainable land use under climate change,” in Climate Change Adaptation in Latin America, edsW. L. Filho and L. E. de Freitas (Cham: Springer), 3–17. Schultze-Kraft, R., Rao, I.M., Peters,M., Clements, R. J., Bai, C., and Liu, G. (2018). Tropical forage legumes for environmental benefits: an overview. Trop. Grassl. 6, 1–14. doi: 10.17138/TGFT(6)1-14 Shelton, H. M., Franzel, S., and Peters, M. (2005). Adoption of tropical legume technology around the world: analysis of success. Trop. Grassl. 39, 198–209. Available online at: https://www.tropicalgrasslands.info/index.php/tgft/pages/ view/tropicalGrasslands (accessed September 14, 2021). Simpson, C. E., Valls, J. F. M., and Miles, J. W. (1995). “Biología reproductiva y potencial para la recombinación genética de Arachis,” in Biología y Agronomía de Especies Forrajeras de Arachis, ed P.C. Kerridge (Cali: Centro Internacional de Agricultura Tropical), 46–55. Available online at: https://hdl.handle.net/ 10568/54798 Smith, J., Cadavid, J. V., Rincón, A., and Vera, R. (1997). Land speculation and intensification at the frontier: a seeming paradox in the Colombian Savanna. Agric. Syst. 54, 501–520. doi: 10.1016/S0308-521X(96)00 088-1 Subbarao, G., Nakahara, K., Hurtado, M., Ono, H., Moreta, D., Salcedo, A. F., et al. (2009). Evidence for biological nitrification inhibition in Brachiaria pastures. PNAS 106, 17302–17307. doi: 10.1073/pnas.090369 4106 Subbarao, G. V., Arango, J., Masahiro, K., Hooper, A. M., Yoshihashi, T., Ando, Y., et al. (2017). Genetic mitigation strategies to tackle agricultural GHG emissions: The case for biological nitrification inhibition technology. Plant Sci. 262, 165–168. doi: 10.1016/j.plantsci.2017. 05.004 Thornton, P. K., Van de Steeg, J., Notenbaert, A., and Herrrero, M. (2009). The impacts of climate change on livestock and livestock systems in developing countries: a review of what we know and what we need to know. Agric. Syst. 101, 113–127. doi: 10.1016/j.agsy.2009. 05.002 Trujillo-Barrera, A., Pennings, J. M. E., and Hofenk, D. (2016). Understanding producers’ motives for adopting sustainable practices: the role of expected rewards, risk perception and risk tolerance. Eur. Rev. Agric. Econ. 43, 359–382. doi: 10.1093/erae/ jbv038 Valentim, J. F., and Andrade, C. M. S. (2005). Forage peanut (Arachis pintoi): a high yielding and high-quality tropical legume for sustainable cattle production systems in the western Brazilian Amazon. Trop. Grassl. 39:222. Available online at: https://www.tropicalgrasslands.info/index.php/tgft/pages/ view/tropicalGrasslands (accessed September 14, 2021). Valls, J. F. M., and Pizarro, E. A. (1995). “Recolección de germoplasma de Arachis silvestre,” in Biología y Agronomía de Especies Forrajeras de Arachis, ed P. C. Kerridge (Cali: Centro Internacional de Agricultura Tropical), 21–30. Available online at: https://hdl.handle.net/10568/54796 (accessed September 14, 2021). van Winsen, F., de Mey, Y., Lauwers, L., Van Passel, S., Vancauteren, M., and Wauters, E. (2014). Determinants of risk behaviour: effects of perceived risks and risk attitude on farmer’s adoption of risk management strategies. J. Risk Res. 19, 56–78. doi: 10.1080/13669877.2014.94 0597 Vasques, I. C. F., Souza, A. A., Morais, E. G., Benevenute, P. A. N., da Silva, L. C. M., Homem, B. G. C., et al. (2019). Improved management increases carrying capacity of Brazilian pastures. Agric. Ecosyst. Environ. 282, 30–39. doi: 10.1016/j.agee.2019.05. 017 Villegas, D. M., Velasquez, J., Arango, J., Obregon, K., Rao, I. M., Rosas, G., et al. (2020). Urochloa grasses swap nitrogen source when grown in association with legumes in tropical pastures. Diversity 12:419. doi: 10.3390/d1211 0419 Walther, G., Beibner, S., and Burga, A. (2005). Trends in the upward shift of alpine plants. J. Veg. Sci. 16, 541–548. doi: 10.1111/j.1654-1103.2005.tb02 394.x White, D., Holmann, F., Fujisaki, S., Reategui, K., and Lascano, C. (2001). “Will intensifying pasture management in Latin America protect forests–or is it the other way around?” in Agricultural Technologies and Tropical Deforestation, eds A. Angelsen and D. Kaimowitz (Wallingford: CABI Publishing), 91–113. Williams, D. G., and Baruch, Z. (2000). African grass invasion in the Americas: ecosystem consequences and the role of ecophysiology. Biol. Invasions 2, 123–140. doi: 10.1023/A:101004052 4588 Wunscher, T., Schultze-Kraft, R., Peters, M., and Rivas, L. (2004). Early adoption of the tropical forage legume Arachis Pintoi in Huetar norte, Costa Rica. Exp. Agric. 40, 257–268. doi: 10.1017/S001447970300 1583 Attribution-ShareAlike 4.0 International http://creativecommons.org/licenses/by-sa/4.0/ application/pdf application/pdf Colombia Arachis pintoi in Cattle Systems No registra Frontiers in Sustainable Food Systems; Vol. 5, Núm. 5 (2021):Frontiers in Sustainable Food Systems (Octubre);p. 3 -49.