Gas exchange and chlorophyll fluorescence in spearmint (Mentha spicata L.) leaves influenced by mineral nutrition
The production of export-quality spearmint is limited in Colombia because of low production volumes, poor compliance with good agricultural practices, nutrient availability, and fertilization management. This study aimed to identify how NPK fertilization influences photosynthesis and photochemistry...
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | Español |
Publicado: |
Universidad Pedagógica y Tecnológica de Colombia - UPTC
2024
|
Materias: | |
Acceso en línea: | https://revistas.uptc.edu.co/index.php/ciencias_horticolas/article/view/13685 http://hdl.handle.net/20.500.12324/38778 |
id |
RepoAGROSAVIA38778 |
---|---|
record_format |
dspace |
institution |
Corporación Colombiana de Investigación Agropecuaria |
collection |
Repositorio AGROSAVIA |
language |
Español |
topic |
Fisiología de la planta nutrición - F61 Plantas aromáticas Nutrición de las plantas Plantas perennes Lamiaceae Hortalizas y plantas aromáticas http://aims.fao.org/aos/agrovoc/c_2668 http://aims.fao.org/aos/agrovoc/c_16379 http://aims.fao.org/aos/agrovoc/c_5696 http://aims.fao.org/aos/agrovoc/c_4123 |
spellingShingle |
Fisiología de la planta nutrición - F61 Plantas aromáticas Nutrición de las plantas Plantas perennes Lamiaceae Hortalizas y plantas aromáticas http://aims.fao.org/aos/agrovoc/c_2668 http://aims.fao.org/aos/agrovoc/c_16379 http://aims.fao.org/aos/agrovoc/c_5696 http://aims.fao.org/aos/agrovoc/c_4123 Cano Gallego, Lucas Esteban Minchalá Buestan, Nube Loaiza Ruíz, Ruby Alejandra Cartagena Valenzuela, José Régulo Córdoba Gaona, Oscar de Jesús Gas exchange and chlorophyll fluorescence in spearmint (Mentha spicata L.) leaves influenced by mineral nutrition |
description |
The production of export-quality spearmint is limited in Colombia because of low production volumes, poor compliance with good agricultural practices, nutrient availability, and fertilization management. This study aimed to identify how NPK fertilization influences photosynthesis and photochemistry in Mentha plants during vegetative growth in a mesh house. Increasing doses of chemical fertilization were evaluated with a 10-30-10 (N-P-K) formula at 0, 60, 90, 120, and 180 kg ha-1. The evaluated variables were net photosynthesis (A), transpiration (E), stomatal conductance (gs), leaf temperature (Tleaf), quantum yield (Qy), Non-photochemical quenching (NPQ), photochemical quenching (qP), and dry matter (Dm). The highest A, Qy, E, and gs values were in the plants treated with high NPK doses; the NPQ and qP increased in the plants with low NPK doses. These findings elucidated the influence of NPK on photosynthesis and other physiological parameters in the growth and development of spearmint. |
format |
article |
author |
Cano Gallego, Lucas Esteban Minchalá Buestan, Nube Loaiza Ruíz, Ruby Alejandra Cartagena Valenzuela, José Régulo Córdoba Gaona, Oscar de Jesús |
author_facet |
Cano Gallego, Lucas Esteban Minchalá Buestan, Nube Loaiza Ruíz, Ruby Alejandra Cartagena Valenzuela, José Régulo Córdoba Gaona, Oscar de Jesús |
author_sort |
Cano Gallego, Lucas Esteban |
title |
Gas exchange and chlorophyll fluorescence in spearmint (Mentha spicata L.) leaves influenced by mineral nutrition |
title_short |
Gas exchange and chlorophyll fluorescence in spearmint (Mentha spicata L.) leaves influenced by mineral nutrition |
title_full |
Gas exchange and chlorophyll fluorescence in spearmint (Mentha spicata L.) leaves influenced by mineral nutrition |
title_fullStr |
Gas exchange and chlorophyll fluorescence in spearmint (Mentha spicata L.) leaves influenced by mineral nutrition |
title_full_unstemmed |
Gas exchange and chlorophyll fluorescence in spearmint (Mentha spicata L.) leaves influenced by mineral nutrition |
title_sort |
gas exchange and chlorophyll fluorescence in spearmint (mentha spicata l.) leaves influenced by mineral nutrition |
publisher |
Universidad Pedagógica y Tecnológica de Colombia - UPTC |
publishDate |
2024 |
url |
https://revistas.uptc.edu.co/index.php/ciencias_horticolas/article/view/13685 http://hdl.handle.net/20.500.12324/38778 |
work_keys_str_mv |
AT canogallegolucasesteban gasexchangeandchlorophyllfluorescenceinspearmintmenthaspicatalleavesinfluencedbymineralnutrition AT minchalabuestannube gasexchangeandchlorophyllfluorescenceinspearmintmenthaspicatalleavesinfluencedbymineralnutrition AT loaizaruizrubyalejandra gasexchangeandchlorophyllfluorescenceinspearmintmenthaspicatalleavesinfluencedbymineralnutrition AT cartagenavalenzuelajoseregulo gasexchangeandchlorophyllfluorescenceinspearmintmenthaspicatalleavesinfluencedbymineralnutrition AT cordobagaonaoscardejesus gasexchangeandchlorophyllfluorescenceinspearmintmenthaspicatalleavesinfluencedbymineralnutrition AT canogallegolucasesteban intercambiogaseosoyfluorescenciadelaclorofilaenmentamenthaspicatalinfluenciadosporlanutricionmineral AT minchalabuestannube intercambiogaseosoyfluorescenciadelaclorofilaenmentamenthaspicatalinfluenciadosporlanutricionmineral AT loaizaruizrubyalejandra intercambiogaseosoyfluorescenciadelaclorofilaenmentamenthaspicatalinfluenciadosporlanutricionmineral AT cartagenavalenzuelajoseregulo intercambiogaseosoyfluorescenciadelaclorofilaenmentamenthaspicatalinfluenciadosporlanutricionmineral AT cordobagaonaoscardejesus intercambiogaseosoyfluorescenciadelaclorofilaenmentamenthaspicatalinfluenciadosporlanutricionmineral |
_version_ |
1808105962029973504 |
spelling |
RepoAGROSAVIA387782024-01-20T03:00:55Z Gas exchange and chlorophyll fluorescence in spearmint (Mentha spicata L.) leaves influenced by mineral nutrition Intercambio gaseoso y fluorescencia de la clorofila en menta (Mentha spicata L.) influenciados por la nutrición mineral Cano Gallego, Lucas Esteban Minchalá Buestan, Nube Loaiza Ruíz, Ruby Alejandra Cartagena Valenzuela, José Régulo Córdoba Gaona, Oscar de Jesús Fisiología de la planta nutrición - F61 Plantas aromáticas Nutrición de las plantas Plantas perennes Lamiaceae Hortalizas y plantas aromáticas http://aims.fao.org/aos/agrovoc/c_2668 http://aims.fao.org/aos/agrovoc/c_16379 http://aims.fao.org/aos/agrovoc/c_5696 http://aims.fao.org/aos/agrovoc/c_4123 The production of export-quality spearmint is limited in Colombia because of low production volumes, poor compliance with good agricultural practices, nutrient availability, and fertilization management. This study aimed to identify how NPK fertilization influences photosynthesis and photochemistry in Mentha plants during vegetative growth in a mesh house. Increasing doses of chemical fertilization were evaluated with a 10-30-10 (N-P-K) formula at 0, 60, 90, 120, and 180 kg ha-1. The evaluated variables were net photosynthesis (A), transpiration (E), stomatal conductance (gs), leaf temperature (Tleaf), quantum yield (Qy), Non-photochemical quenching (NPQ), photochemical quenching (qP), and dry matter (Dm). The highest A, Qy, E, and gs values were in the plants treated with high NPK doses; the NPQ and qP increased in the plants with low NPK doses. These findings elucidated the influence of NPK on photosynthesis and other physiological parameters in the growth and development of spearmint. 2024-01-19T16:48:53Z 2024-01-19T16:48:53Z 2022 2022 article Artículo científico http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 https://revistas.uptc.edu.co/index.php/ciencias_horticolas/article/view/13685 2422-3719 http://hdl.handle.net/20.500.12324/38778 10.17584/rcch.2022v16i1.13685 reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA spa Revista Colombiana de Ciencias Hortícolas 16 1 1 14 Agronet. 2021. Estadísticas Agropecuarias - Agrícola. In: ht tps://www.agronet.gov.co/estadistica/paginas/home. aspx?cod=1; Consulted: September, 2021. Battie-Laclau, P., J.-P. Laclau, C. Beri, L. Mietton, M.R.A. Muniz, B.C. Arenque, M.C. Piccolo, L. Jordan-Meille, J.-P. Bouillet, and Y. Nouvellon. 2014. Photosynthetic and anatomical responses of Eucalyptus grandis leaves to potassium and sodium supply in a field experiment. Plant Cell Environ. 37, 70-81. Doi: 10.1111/pce.12131 Brown, B., J.M. Hart, M.P. Wescott, and N.W. Christensen. 2003. The critical role of nutrient management in mint production. Better Crops 87(4), 9-11 Carstensen, A., A.E. Szameitat, J. Frydenvang, and S. Hus ted. 2019. Chlorophyll a fluorescence analysis can de tect phosphorus deficiency under field conditions and is an effective tool to prevent grain yield reductions in spring barley (Hordeum vulgare L.). Plant Soil 434(1), 79-91. Doi: 10.1007/s11104-018-3783-6 Cendrero-Mateo, M.P., A.E. Carmo-Silva, A. Porcar-Castell, E.P. Hamerlynck, S.A. Papuga, and M.S. Moran. 2015. Dynamic response of plant chlorophyll fluorescence to light, water and nutrient availability. Funct. Plant Biol. 42(8), 746-757. Doi: 10.1071/FP15002 Cirlini, M., P. Mena, M. Tassotti, K.A. Herrlinger, K.M. Nie man, C. Dall’Asta, and D. Del Rio. 2016. Phenolic and volatile composition of a dry spearmint (Mentha spi cata L.) extract. Molecules 21(8), 1007. Doi: 10.3390/ molecules21081007 Chen, C.-T., C.-L. Lee, and D.-M. Yeh. 2018. Effects of nitrogen, phosphorus, potassium, calcium, or mag nesium deficiency on growth and photosynthesis of Eustoma. HortScience 53(6), 795-798. Doi: 10.21273/ HORTSCI12947-18 Chrysargyris, A., E. Nikolaidou, A. Stamatakis, and N. Tzortzakis. 2017. Vegetative, physiological, nutritio nal and antioxidant behavior of spearmint (Mentha spicata L.) in response to different nitrogen supply in hydroponics. J. Appl. Res. Med. Aromat. Plants 6, 52- 61. Doi: 10.1016/j.jarmap.2017.01.006 Chrysargyris, A., S.A. Petropoulos, Â Fernandes, L. Barros, N. Tzortzakis, and I.C.F.R. Ferreira. 2019b. Effect of phosphorus application rate on Mentha spicata L. grown in deep flow technique (DFT). Food Chem. 276, 84-92. Doi: 10.1016/j.foodchem.2018.10.020 Chrysargyris, A., M. Solomou, S.A. Petropoulos, and N. Tzortzakis. 2019a. Physiological and biochemical at tributes of Mentha spicata when subjected to saline conditions and cation foliar application. J. Plant Phy siol. 232, 27-38. Doi: 10.1016/j.jplph.2018.10.024 DaMatta, F.M., R.A. Loos, E.A. Silva, and M.E. Loureiro. 2002. Limitations to photosynthesis in Coffea canepho ra as a result of nitrogen and water availability. J. Plant Physiol. 159, 975-981. Doi: 10.1078/0176-1617-00807 De Angeli, A., D. Monachello, G. Ephritikhine, J.M. Frachis se, S. Thomine, F. Gambale, and H. Barbier-Brygoo. 2006. The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles. Nature 442, 939-942. Doi: 10.1038/nature05013 Demmig-Adams, B., S.-C. Koh, C.M. Cohu, O. Muller, J.J. Stewart, and W.W. Adams III. 2014. Non-pho tochemical fluorescence quenching in contrasting plant species and environments. pp. 531-552. In: Demmig-Adams, B., G. Garab, W. Adams III, and Govindjee (eds.). Non-Photochemical quenching and energy dissipation in plants, algae and cyanobac teria. Advances in Photosynthesis and Respiration. Vol. 40. Springer, Dordrecht, The Netherlands. Doi: 10.1007/978-94-017-9032-1_24 Du, Q., X.-H. Zhao, L. Xia, C.J. Jiang, X.G. Wang, Y. Han, J. Wang, and H.-Q. Yu. 2019. Effects of potassium deficiency on photosynthesis, chloroplast ultrastruc ture, ROS, and antioxidant activities in maize (Zea mays L.). J. Integr. Agric. 18(2), 395-406. Doi: 10.1016/ S2095-3119(18)61953-7 Engels, C., E. Kirkby, and P. White. 2012. Mineral nutri tion, yield and source: sink relationships. pp. 85-133. In: Marschner, P. (ed.). Marschner’s mineral nutrition of higher plants. Elsevier, London. Doi: 10.1016/ B978-0-12-384905-2.00005-4 Frydenvang, J., M. van Maarschalkerweerd, A. Carstensen, S. Mundus, S.B. Schmidt, P.R. Pedas, K.H. Laursen, J.K. Schjoerring, and S. Husted. 2015. Sensitive detec tion of phosphorus deficiency in plants using chloro phyll a fluorescence. Plant Physiol. 169(1), 353-361. Doi: 10.1104/pp.15.00823 Gerardeaux, E., L. Jordan-Meille, and S. Pellerin. 2009. Radiation interception and conversion to biomass in two potassium-deficient cotton crops in South Benin. J. Agric. Sci. 147(2), 155-168. Doi: 10.1017/ S0021859608008381 Guidi, L., E. Lo Piccolo, and M. Landi. 2019. Chlorophy ll fluorescence, photoinhibition and abiotic stress: does it make any difference the fact to be a C3 or C4 species? Front. Plant Sci. 10, 174. Doi: 10.3389/ fpls.2019.00174 Hawkesford, M., W. Horst, T. Kichey, H. Lambers, J. Schjoerring, I.S. Møller, and P. White. 2012. Func tions of macronutrients. pp. 135-189. In: Marsch ner, P. (ed.). Marschner’s mineral nutrition of hi gher plants. 3rd ed. Elsevier, London. Doi: 10.1016/ B978-0-12-384905-2.00006-6 Hernández, I. and S. Munné-Bosch. 2015. Linking phos phorus availability with photo-oxidative stress in plants. J. Exp. Bot. 66, 2889-2900. Doi: 10.1093/jxb/ erv056 Hou, W., J. Yan, B. Jákli, J. Lu, T. Ren, R. Cong, and X. Li. 2018. Synergistic effects of nitrogen and potassium on quantitative limitations to photosynthesis in rice (Oryza sativa L.). J. Agric. Food Chem. 66(20), 5125- 5132. Doi: 10.1021/acs.jafc.8b01135 Hu, W., T. Ren, F. Meng, R. Cong, X. Li, P.J. White, and J. Lu. 2019. Leaf photosynthetic capacity is regulated by the interaction of nitrogen and potassium through coor dination of CO2 diffusion and carboxylation. Physiol. Plant. 167(3), 418-432. Doi: 10.1111/ppl.12919 Huang, Z.A., D.A. Jiang, Y. Yang, J.W. Sun, and S.H. Jin. 2004. Effects of nitrogen deficiency on gas exchange, chlorophyll fluorescence, and antioxidant enzymes in leaves of rice plants. Photosynthetica 42(3), 357-364. Doi: 10.1023/B:PHOT.0000046153.08935.4c Hubbart, S., I.R.A. Smillie, M. Heatle, R. Swarup, C.C. Foo, L. Zhao, and E.H. Murchie. 2018. Enhanced thylakoid photoprotection can increase yield and canopy radia tion use efficiency in rice. Commun. Biol. 1, 22. Doi: 10.1038/s42003-018-0026-6 Jin, S.H., J.Q. Huang, X.Q. Li, B.S. Zheng, J.S. Wu, Z.J. Wang, G.H. Liu, and M. Chen. 2011. Effects of po tassium supply on limitations of photosynthesis by mesophyll diffusion conductance in Carya cathayensis. Tree Physiol. 31, 1142-1151. Doi: 10.1093/treephys/ tpr095 Kalaji, H.M., A. Jajoo, A. Oukarroum, M. Brestic, M. Ziv cak, I.A. Samborska, M.D. Cetner, I. Łukasik, V. Golt sev, and R.J. Ladle. 2016. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant 38(4), 102. Doi: 10.1007/s11738-016-2113-y Karkanis, A., C. Lykas, V. Liava, A. Bezou, S. Petropoulos, and N. Tsiropoulos. 2017. Weed interference with pe ppermint (Mentha x piperita L.) and spearmint (Mentha spicata L.) crops under different herbicide treatments: effects on biomass and essential oil yield. J. Sci. Food Agric 98(1), 43-50. Doi: 10.1002/jsfa.8435 Kromdijk, J., K. Głowacka, L. Leonelli, S.T. Gabilly, M. Iwai, K.K. Niyogi, and S.P. Long. 2016. Improving photosyn thesis and crop productivity by accelerating recovery from photoprotection. Science 354(6314), 857-861. Doi: 10.1126/science.aai8878 Lima, J.D., P.R. Mosquim, and F.M. Da Matta. 1999. Leaf gas exchange and chlorophyll fluorescence parameters in Phaseolus vulgaris as affected by nitrogen and phos phorus deficiency. Photosynthetica 36(1), 113-121. Doi: 10.1023/A:1007079215683 Lu, Z., J. Lu, Y. Pan, P. Lu, X. Li, R. Cong, and T. Ren. 2016. Anatomical variation of mesophyll conductance un der potassium deficiency has a vital role in determi ning leaf photosynthesis. Plant Cell Environ. 39(11), 2428-2439. Doi: 10.1111/pce.12795 Lu, C. and J. Zhang. 2000. Photosynthetic CO2 assimilation, chlorophyll fluorescence and photoinhibition as affec ted by nitrogen deficiency in maize plants. Plant Sci. 151(2), 135-143. Doi: 10.1016/S0168-9452(99)00207-1 Malhotra, H., Vandana, S. Sharma, and R. Pandey. 2018. Phosphorus nutrition: plant growth in respon se to deficiency and excess. pp. 171-190. In: Hasa nuzzaman, M., M. Fujita, H. Oku, K. Nahar, and B. Hawrylak-Nowak (eds.). Plant nutrients and abiotic stress tolerance. Springer, Singapore. Doi: 10.1007/978-981-10-9044-8_7 Martineau, E., J.-C. Domec, A. Bosc, M. Dannoura, Y. Gi bon, C. Bénard, and L. Jordan-Meille. 2017. The role of potassium on maize leaf carbon exportation under drought condition. Acta Physiol. Plant. 39, 219. Doi: 10.1007/s11738-017-2515-5 Mu, X. and Y. Chen. 2021. The physiological response of pho tosynthesis to nitrogen deficiency. Plant Physiol. Bio chem. 158, 76-82. Doi: 10.1016/j.plaphy.2020.11.01 Mu, X., Q. Chen, X. Wu, F. Chen, L. Yuan, and G. Mi. 2018. Gibberellins synthesis is involved in the reduction of cell flux and elemental growth rate in maize leaf un der low nitrogen supply. Environ. Exp. Bot. 150, 198- 208. Doi: 10.1016/j.envexpbot.2018.03.012 Muñoz-Huerta, R.F., R.G. Guevara-Gonzalez, L.M. Contre ras-Medina, I. Torres-Pacheco, J. Prado-Olivarez, and R.V. Ocampo-Velazquez. 2013. A review of methods for sensing the nitrogen status in plants: advantages, disadvantages and recent advances. Sensors 13(8), 10823-10843. Doi: 10.3390/s130810823 Murchie, E.H. and A.V. Ruban. 2020. Dynamic non-pho tochemical quenching in plants: from molecular me chanism to productivity. Plant J. 101(4), 885-896. Doi: 10.1111/tpj.14601 Oosterhuis, D.M., D.A. Loka and T.B. Raper. 2013. Potas sium and stress alleviation: Physiological functions and management of cotton. J. Plant Nutr. Soil Sci. 176(3), 331-343. Doi: 10.1002/jpln.201200414 Pan, Y., Z. Lu, J. Lu, X. Li, R. Cong, and T. Ren. 2017. Effects of low sink demand on leaf photosynthesis under po tassium deficiency. Plant Physiol Biochem. 113, 110- 121. Doi: 10.1016/j.plaphy.2017.01.027 Pandey, R., G. Zinta, H. AbdElgawad, A. Ahmad, V. Jain, and I.A. Janssens. 2015. Physiological and molecular alterations in plants exposed to high [CO2] under phosphorus stress. Biotechnol. Adv. 33(3-4), 303-316. Doi: 10.1016/j.biotechadv.2015.03.011 Pantin, F., T. Simonneau, G. Rolland, M. Dauzat, and B. Muller. 2011. Control of leaf expansion: A develop mental switch from metabolics to hydraulics. Plant Physiol. 156(2), 803-815. Doi: 10.1104/pp.111.176289 Parkash, V. and S. Singh. 2020. A review on potential plant-based water stress indicators for vegetable crops. Sustainability 12(10), 3945. Doi: 10.3390/su12103945 Pedraza, R. and M.C. Henao. 2008. Composición del tejido vegetal y su relación con variables de crecimiento y ni veles de nutrientes en el suelo en cultivos comerciales de menta (Mentha spicata L.). Agron. Colomb. 26(2), 186-196 Qiu, J. and D.W. Israel. 1994. Carbohydrate accumulation and utilization in soybean plants in response to alte red phosphorus nutrition. Physiol. Plant. 90(4), 722- 728. Doi: 10.1111/j.1399-3054.1994.tb02529.x R Core Team. 2017. R: a language and environment for sta tistical computing. Vienna. Rodríguez Torressi, A.O., M. Yonni, M. Nazareno, C.R. Gal marini, and C.A. Bouzo. 2015. Eficiencia fotoquímica máxima e índice de potencial fotosintético en plantas de melón (Cucumis melo) tratadas con bajas temperatu ras. FAVE, Secc. Cienc. Agrar. 13, 1-2. Doi: 10.14409/ fa.v13i1/2.4966 Roveda-Hoyos, G. and L. Moreno-Fonseca. 2019. Physio logical and antioxidant responses of cape gooseberry (Physalis peruviana L.) seedlings to phosphorus defi ciency. Agron. Colomb. 37(1), 3-11. Doi: 10.15446/ agron.colomb.v37n1.65610 Ruban, A.V. 2016. Nonphotochemical chlorophyll fluo rescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiol. 170(4), 1903-1916. Doi: 10.1104/pp.15.01935 Sánchez-Reinoso, A.D., Y. Jiménez-Pulido, J.P. Martínez Pérez, C.S. Pinilla, and G. Fischer. 2019. Chlorophyll fluorescence and other physiological parameters as indicators of waterlogging and shadow stress in lulo (Solanum quitoense var. septentrionale) seedlings. Rev. Colomb. Cienc. Hortic. 13(3), 325-335. Doi: 10.17584/ rcch.2019v13i3.100171 Schlüter, U., C. Colmsee, U. Scholz, A. Brӓutigam, A.P.M. Weber, N. Zellerhoff, M. Bucher, H. Fahnenstich, and U. Sonnewald. 2013. Adaptation of maize source leaf metabolism to stress related disturbances in carbon, nitrogen and phosphorus balance. BMC Genomics 14(1), 442. Doi: 10.1186/1471-2164-14-442 Singh, P., A. Misra, and N.K. Srivastava. 2001. Influence of Mn deficiency on growth, chlorophyll content, phy siology, and essential monoterpene oil (s) in genotypes of spearmint (Mentha spicata L.). Photosynthetica 39(3), 473-476. Doi: 10.1023/A:1015107116205 Smethurst, C.F., T. Garnett, and S. Shabala. 2005. Nu tritional and chlorophyll fluorescence responses of lucerne (Medicago sativa) to waterlogging and subse quent recovery. Plant Soil 270(1), 31-45. Doi: 10.1007/ s11104-004-1082-x Tewari, R.K., P. Kumar, and P.N. Sharma. 2007. Oxidative stress and antioxidant responses in young leaves of mulberry plants grown under nitrogen, phosphorus or potassium deficiency. J. Integr. Plant Biol. 49(3), 313- 322. Doi: 10.1111/j.1744-7909.2007.00358.x Tighe-Neira, R., M. Alberdi, P. Arce-Johnson, J. Romero, M. Reyes-Díaz, Z. Rengel, and C. Inostroza-Blan cheteau. 2018. Role of potassium in governing pho tosynthetic processes and plant yield. pp. 191-203. In: Hasanuzzaman, M., M. Fujita, H. Oku, K. Nahar, and B. Hawrylak-Nowak (eds.). Plant nutrients and abiotic stress tolerance. Springer, Singapore. Doi: 10.1007/978-981-10-9044-8_8 Timlin, D.J., T.C.M. Naidu, D.H. Fleisher, and V.R. Reddy. 2017. Quantitative effects of phosphorus on maize canopy photosynthesis and biomass. Crop Sci. 57(6), 3156-3169. Doi: 10.2135/cropsci2016.11.0970 Tremblay, N., Z. Wang, and Z.G. Cerovic. 2012. Sensing crop nitrogen status with fluorescence indicators. A review. Agron. Sustain. Dev. 32, 451-464. Doi: 10.1007/s13593-011-0041-1 Walker, A.P., A.P. Beckerman, L. Gu, J. Kattge, L.A. Cer nusak, T.F. Domingues, J.C. Scales, G. Wohlfahrt, S.D. Wullschleger, and F.I. Woodward. 2014. The relations hip of leaf photosynthetic traits–Vcmax and Jmax–to leaf nitrogen, leaf phosphorus, and specific leaf area: a meta-analysis and modeling study. Ecol. Evol. 4(16), 3218-3235. Doi: 10.1002/ece3.1173 Wang, X., L. Wang, and Z. Shangguan. 2016. Leaf gas ex change and fluorescence of two winter wheat varie ties in response to drought stress and nitrogen supply. PLoS One 11(11), e0165733. Doi: 10.1371/journal. pone.0165733 Wang, X.-G., X.-H. Zhao, C.-J. Jiang, C.-H. Li, S. Cong, D. Wu, Y.-Q. Chen, H.-Q. Yu, and C.-Y. Wang. 2015. Effects of potassium deficiency on photosynthesis and photoprotection mechanisms in soybean (Glycine max (L.) Merr.). J. Integr. Agric. 14(5), 856-863. Doi: 10.1016/S2095-3119(14)60848-0 Xie, K., Z. Lu, Y. Pan, L. Gao, P. Hu, M. Wang, and S. Guo. 2020. Leaf photosynthesis is mediated by the coor dination of nitrogen and potassium: the importance of anatomical-determined mesophyll conductance to CO2 and carboxylation capacity. Plant Sci. 290, 110267. Doi: 10.1016/j.plantsci.2019.110267 Xu, H.X., X.Y. Weng, and Y. Yan. 2007. Effect of phos phorus deficiency on the photosynthetic characteris tics of rice plants. Russ. J. Plant Physiol. 54, 741-748. Doi: 10.1134/S1021443707060040 Ye, Z., J. Zeng, X. Li, F. Zeng, and G. Zhang. 2017. Physio logical characterizations of three barley genotypes in response to low potassium stress. Acta Physiol. Plant. 39, 232. Doi: 10.1007/s11738-017-2516-4 Zhao, X., Q. Du, Y. Zhao, H. Wang, Y. Li, X. Wang, and H. Yu. 2016. Effects of different potassium stress on leaf photosynthesis and chlorophyll fluorescence in maize (Zea mays L.) at seedling stage. Agric. Sci. 7(1), 44-53. Doi: 10.4236/as.2016.71005 Wikifarmer. 2021. Información sobre la planta de menta. In: https://wikifarmer.com/es/; consulted: Septem ber, 2021. Attribution-ShareAlike 4.0 International http://creativecommons.org/licenses/by-sa/4.0/ application/pdf application/pdf Colombia Universidad Pedagógica y Tecnológica de Colombia - UPTC Bogotá (Colombia) Revista Colombiana de Ciencias Hortícolas; Vol. 1, Núm. 45 (2022): Revista Colombiana de Ciencias Hortícolas;p. 1 -14. |