Estudio de siRNA para la identificación de virus presentes en el banco de germoplasma de Achira (Canna edulis) Ker Gawl. (Cannaceae)

En este estudio se analizó el banco de germoplasma de Achira (Canna edulis), una planta tropical utilizada para fines alimenticios y ornamentales en muchos países del mundo, el cual está a cargo de la corporación colombiana de investigación agropecuaria AGROSAVIA, localizado en centro de investigaci...

Full description

Bibliographic Details
Main Author: Rico Sierra, Edgar Mauricio
Other Authors: Reyes Muñoz, Alejandro
Format: thesis
Language:Español
Published: Universidad de los Andes 2024
Subjects:
Online Access:http://hdl.handle.net/20.500.12324/38715
id RepoAGROSAVIA38715
record_format dspace
institution Corporación Colombiana de Investigación Agropecuaria
collection Repositorio AGROSAVIA
language Español
topic Genética vegetal y fitomejoramiento - F30
Canna edulis
Banco de germoplasma
Virus de las plantas
Variación genética
Gestión de lucha integrada
Raíces y tubérculos
http://aims.fao.org/aos/agrovoc/c_1253
http://aims.fao.org/aos/agrovoc/c_35302
http://aims.fao.org/aos/agrovoc/c_5985
http://aims.fao.org/aos/agrovoc/c_15975
http://aims.fao.org/aos/agrovoc/c_34030
spellingShingle Genética vegetal y fitomejoramiento - F30
Canna edulis
Banco de germoplasma
Virus de las plantas
Variación genética
Gestión de lucha integrada
Raíces y tubérculos
http://aims.fao.org/aos/agrovoc/c_1253
http://aims.fao.org/aos/agrovoc/c_35302
http://aims.fao.org/aos/agrovoc/c_5985
http://aims.fao.org/aos/agrovoc/c_15975
http://aims.fao.org/aos/agrovoc/c_34030
Rico Sierra, Edgar Mauricio
Estudio de siRNA para la identificación de virus presentes en el banco de germoplasma de Achira (Canna edulis) Ker Gawl. (Cannaceae)
description En este estudio se analizó el banco de germoplasma de Achira (Canna edulis), una planta tropical utilizada para fines alimenticios y ornamentales en muchos países del mundo, el cual está a cargo de la corporación colombiana de investigación agropecuaria AGROSAVIA, localizado en centro de investigación La Selva (Rionegro - Antioquia) y con copia en centro de investigación Nataima (Espinal - Tolima). El objetivo fue detectar la presencia de virus en las diferentes accesiones de Achira mediante la secuenciación de siARN. Se identificaron virus previamente reportados como el Bean yellow mosaic virus (BYMV- Potyvirus), Canna yellow mosaic virus (CaYMV-Badnavirus) y Canna yellow streak virus (CaYSV-Potyvirus), siendo este último el más predominante y mostrando un porcentaje de identidad de aminoácido menor al 75% con respecto al genoma de referencia. Además, se detectó la posible infección con virus previamente no reportados, como el Lettuce chlorosis virus (LCV-Crinivirus) y Potato yellowing virus (PYV-Ilarvirus). LCV presentó patrones de alto mapeo o Hotspots en las accesiones de las dos localidades en regiones similares, mientras que el PYV solo se detectó en dos muestras en CI La selva. Estos hallazgos son importantes para la conservación y manejo de la variabilidad genética de la Achira y para la implementación de estrategias de control y prevención de la propagación de virus en las poblaciones.
author2 Reyes Muñoz, Alejandro
author_facet Reyes Muñoz, Alejandro
Rico Sierra, Edgar Mauricio
format thesis
author Rico Sierra, Edgar Mauricio
author_sort Rico Sierra, Edgar Mauricio
title Estudio de siRNA para la identificación de virus presentes en el banco de germoplasma de Achira (Canna edulis) Ker Gawl. (Cannaceae)
title_short Estudio de siRNA para la identificación de virus presentes en el banco de germoplasma de Achira (Canna edulis) Ker Gawl. (Cannaceae)
title_full Estudio de siRNA para la identificación de virus presentes en el banco de germoplasma de Achira (Canna edulis) Ker Gawl. (Cannaceae)
title_fullStr Estudio de siRNA para la identificación de virus presentes en el banco de germoplasma de Achira (Canna edulis) Ker Gawl. (Cannaceae)
title_full_unstemmed Estudio de siRNA para la identificación de virus presentes en el banco de germoplasma de Achira (Canna edulis) Ker Gawl. (Cannaceae)
title_sort estudio de sirna para la identificación de virus presentes en el banco de germoplasma de achira (canna edulis) ker gawl. (cannaceae)
publisher Universidad de los Andes
publishDate 2024
url http://hdl.handle.net/20.500.12324/38715
work_keys_str_mv AT ricosierraedgarmauricio estudiodesirnaparalaidentificaciondeviruspresentesenelbancodegermoplasmadeachiracannaeduliskergawlcannaceae
_version_ 1808106658495201280
spelling RepoAGROSAVIA387152024-02-06T16:25:53Z Estudio de siRNA para la identificación de virus presentes en el banco de germoplasma de Achira (Canna edulis) Ker Gawl. (Cannaceae) Rico Sierra, Edgar Mauricio Reyes Muñoz, Alejandro Vargas Berdugo, Angela Maria Genética vegetal y fitomejoramiento - F30 Canna edulis Banco de germoplasma Virus de las plantas Variación genética Gestión de lucha integrada Raíces y tubérculos http://aims.fao.org/aos/agrovoc/c_1253 http://aims.fao.org/aos/agrovoc/c_35302 http://aims.fao.org/aos/agrovoc/c_5985 http://aims.fao.org/aos/agrovoc/c_15975 http://aims.fao.org/aos/agrovoc/c_34030 En este estudio se analizó el banco de germoplasma de Achira (Canna edulis), una planta tropical utilizada para fines alimenticios y ornamentales en muchos países del mundo, el cual está a cargo de la corporación colombiana de investigación agropecuaria AGROSAVIA, localizado en centro de investigación La Selva (Rionegro - Antioquia) y con copia en centro de investigación Nataima (Espinal - Tolima). El objetivo fue detectar la presencia de virus en las diferentes accesiones de Achira mediante la secuenciación de siARN. Se identificaron virus previamente reportados como el Bean yellow mosaic virus (BYMV- Potyvirus), Canna yellow mosaic virus (CaYMV-Badnavirus) y Canna yellow streak virus (CaYSV-Potyvirus), siendo este último el más predominante y mostrando un porcentaje de identidad de aminoácido menor al 75% con respecto al genoma de referencia. Además, se detectó la posible infección con virus previamente no reportados, como el Lettuce chlorosis virus (LCV-Crinivirus) y Potato yellowing virus (PYV-Ilarvirus). LCV presentó patrones de alto mapeo o Hotspots en las accesiones de las dos localidades en regiones similares, mientras que el PYV solo se detectó en dos muestras en CI La selva. Estos hallazgos son importantes para la conservación y manejo de la variabilidad genética de la Achira y para la implementación de estrategias de control y prevención de la propagación de virus en las poblaciones. Achira-Canna indica Maestría en biología computacional Maestría 2024-01-12T21:18:16Z 2024-01-12T21:18:16Z 2023-05 2023 thesis Tesis de Maestría http://purl.org/coar/version/c_970fb48d4fbd8a85 http://hdl.handle.net/20.500.12324/38715 reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA spa Alabi, O. J., Al Rwahnih, M., Jifon, J. L., Sétamou, M., Brown, J. K., Gregg, L., & Park, J.-W. (2017). A Mixed Infection of Lettuce chlorosis virus , Papaya ringspot virus , and Tomato yellow leaf curl virus-IL Detected in a Texas Papaya Orchard Affected by a Virus-Like Disease Outbreak. Plant Disease, 101(7), 1094–1102. https://doi.org/10.1094/PDIS-01-17-0118-RE Alves, J. M. P., De Oliveira, A. L., Sandberg, T. O. M., Moreno-Gallego, J. L., De Toledo, M. A. F., De Moura, E. M. M., Oliveira, L. S., Durham, A. M., Mehnert, D. U., De Zanotto, P. M. A., Reyes, A., & Gruber, A. (2016). GenSeed-HMM: A tool for progressive assembly using profile HMMS as seeds and its application in Alpavirinae viral discovery from metagenomic data. Frontiers in Microbiology, 7(MAR), 1–15. https://doi.org/10.3389/fmicb.2016.00269 Andrews S. (2010). FastQC: a quality control tool for high throughput sequence data. Available online at: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ Balint‐Kurti, P. (2019). The plant hypersensitive response: Concepts, control and consequences. Molecular Plant Pathology, 20(8), 1163–1178. https://doi.org/10.1111/mpp.12821 Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A., & Pevzner, P. A. (2012). SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. Journal of Computational Biology, 19(5), 455–477. https://doi.org/10.1089/cmb.2012.0021 Baradar, A., Hosseini, A., Ratti, C., & Hosseini, S. (2021). Phylogenetic analysis of a Bean yellow mosaic virus isolate from Iran and selecting the phylogenetic marker by comparing the individual genes and complete genome trees of BYMV isolates. Physiological and Molecular Plant Pathology, 114(February), 101632. Barlow, J., Mathias, A., Williamson, R., & Gammarck, D. (1963). A simple method for the quantitative isolation of undergraded high molecular weight ribonucleic acid. Biochemical and Biophysical Reserch Communications, 13(1), 61–66. Betancourt, C., Salomón, C., Moreno Henao, J. M., Montaño, S., Salazar, C., Uribe, P., Martínez, A., Muñoz, L., & Cuervo, M. (2020). First report of Sugarcane mosaic virus in achira (Canna edulis Ker.) in Nariño, Colombia. Revista U.D.C.A Actualidad & Divulgación Borah, B. K., Sharma, S., Kant, R., Johnson, A. M. A., Saigopal, D. V. R., & Dasgupta, I. (2013). Bacilliform DNA-containing plant viruses in the tropics: Commonalities within a genetically diverse group. Molecular Plant Pathology, 14(8), 759–771. https://doi.org/10.1111/mpp.12046 Boualem, A., Dogimont, C., & Bendahmane, A. (2016). The battle for survival between viruses and their host plants. Current Opinion in Virology, 17, 32–38. https://doi.org/10.1016/j.coviro.2015.12.001 Breman, E., Ballesteros, D., Castillo-Lorenzo, E., Cockel, C., Dickie, J., Faruk, A., O’donnell, K., Offord, C. A., Pironon, S., Sharrock, S., & Ulian, T. (2021). Plant diversity conservation challenges and prospects—the perspective of botanic gardens and the millennium seed bank. Plants, 10(11), 1–35. https://doi.org/10.3390/plants10112371 Chauhan, R. P., Hamon, H. F., Rajakaruna, P., Webb, M. A., Payton, M., & Verchot, J. (2015). Reliable Detection for Bean yellow mosaic virus, Canna yellow streak virus , and Canna yellow mottle virus in Canna Varieties with Red Foliage. Plant Disease, 99(2), 188–194. https://doi.org/10.1094/PDIS-05-14-0538-RE Chauhan, R. P., Rajakaruna, P., & Verchot, J. (2015). Complete genome sequence of nine isolates of canna yellow streak virus reveals its relationship to the sugarcane mosaic virus (SCMV) subgroup of potyviruses. Archives of Virology, 160(3), 837–844. https://doi.org/10.1007/s00705-014-2327-5 Chauhan, R. P., Wijayasekara, D., Webb, M. A., & Verchot, J. (2015). A reliable and rapid multiplex RT-PCR assay for detection of two potyviruses and a pararetrovirus infecting 33 canna plants. Plant Disease, 99(12), 1695–1703. https://doi.org/10.1094/PDIS-02-15-0225-RE Donaire, L., Wang, Y., Gonzalez-Ibeas, D., Mayer, K. F., Aranda, M. A., & Llave, C. (2009). Deep-sequencing of plant viral small RNAs reveals effective and widespread targeting of viral genomes. Virology, 392(2), 203–214. https://doi.org/10.1016/j.virol.2009.07.005 Eigenbrode, S. D., Bosque-Pérez, N. A., & Davis, T. S. (2018). Insect-Borne Plant Pathogens and Their Vectors: Ecology, Evolution, and Complex Interactions. Annual Review of Entomology, 63(September), 169–191. https://doi.org/10.1146/annurev-ento-020117-043119 Engels, J. M. M., & Ebert, A. W. (2021). A Critical Review of the Current Global Ex Situ Conservation System for Plant Agrobiodiversity. II. Strengths and Weaknesses of the Current System and Recommendations for Its Improvement. Plants, 10(1904). https://doi.org/https:// doi.org/10.3390/plants10091904 Fei, Y., Pyott, D. E., & Molnar, A. (2021). Temperature modulates virus-induced transcriptional gene silencing via secondary small RNAs. New Phytologist, 232(1), 356–371. https://doi.org/10.1111/nph.17586 Fisher, J. R., Sanchez-Cuevas, M.-C., Nameth, S. T., Woods, V. L., & Ellett, C. W. (1997). First Report of Cucumber Mosaic Virus in Eryngium amethystinum, Canna spp., and Aquilegia hybrids in Ohio. Plant Disease, 81(11), 1331. https://doi.org/10.1094/PDIS.1997.81.11.1331C Gibbs, A. J., Hajizadeh, M., Ohshima, K., & Jones, R. A. C. (2020). The potyviruses: An evolutionary synthesis is emerging. Viruses, 12(2), 1–30. https://doi.org/10.3390/v12020132 Golyaev, V., Candresse, T., Rabenstein, F., & Pooggin, M. M. (2019). Plant virome reconstruction and antiviral RNAi characterization by deep sequencing of small RNAs from dried leaves. Scientific Reports, 9(1), 19268. https://doi.org/10.1038/s41598-019-55547-3 Gong, Q., Wang, Y., Jin, Z., Hong, Y., & Liu, Y. (2022). Transcriptional and post-transcriptional regulation of RNAi-related gene expression during plant-virus interactions. Stress Biology, 2(1), 33. https://doi.org/10.1007/s44154-022-00057-y Guo, Z., Li, Y., & Ding, S.-W. (2019). Small RNA-based antimicrobial immunity. Nature Reviews Immunology, 19(1), 31–44. https://doi.org/10.1038/s41577-018-0071-x Guyatt, K. J., Proll, D. F., Menssen, A., & Davidson, A. D. (1996). The complete nucleotide sequence of bean yellow mosaic potyvirus RNA. Archives of Virology, 141(7), 1231–1246. https://doi.org/10.1007/BF01718827 Hadad, Luria, Smith, Sela, Lachman, & Dombrovsky. (2019). Lettuce Chlorosis Virus Disease: A New Threat to Cannabis Production. Viruses, 11(9), 802. https://doi.org/10.3390/v11090802 Inoue, S., Tamura, M., Ugaki, M., & Suzuki, M. (2018). Complete genome sequences of three Tomato aspermy virus isolates in Japan. Genome Announcements, 6(22), 1–2. https://doi.org/10.1128/genomeA.00474-18 Jacquemond, M. (2012). Cucumber Mosaic Virus. In Advances in Virus Research Viruses and 35 Virus Diseases of Vegetables in the Mediterranean Basin (1st ed., Vol. 84, pp. 439–504). Elsevier Inc. https://doi.org/10.1016/B978-0-12-394314-9.00013-0 Kim, Y., Kim, Y. J., & Paek, K.-H. (2021). Temperature-specific vsiRNA confers RNAi-mediated viral resistance at elevated temperature in Capsicum annuum. Journal of Experimental Botany, 72(4), 1432–1448. https://doi.org/10.1093/jxb/eraa527 Knierim, D., Menzel, W., & Winter, S. (2019). Immunocapture of virions with virus-specific antibodies prior to high-throughput sequencing effectively enriches for virus-specific sequences. PLOS ONE, 14(5), e0216713. https://doi.org/10.1371/journal.pone.0216713 Kreuze, J. F., Perez, A., Untiveros, M., Quispe, D., Fuentes, S., Barker, I., & Simon, R. (2009). Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: A generic method for diagnosis, discovery and sequencing of viruses. Virology, 388(1), 1–7. https://doi.org/10.1016/j.virol.2009.03.024 Li, Y., Xia, F., Wang, Y., Yan, C., Jia, A., & Zhang, Y. (2019). Characterization of a highly divergent Sugarcane mosaic virus from Canna indica L. by deep sequencing. BMC Microbiology, 19, 260. https://doi.org/10.1186/s12866-019-1636-y Lobo-Arias, M., Medina-Cano, C. I., Grisales-Arias, J. D., Yepes-Agudelo, A. F., & Álvarez-Guzmán, J. A. (2017). Caracterización y evaluación morfológicas de la colección colombiana de Achira, Canna edulis Ker Gawl. (Cannaceae). Corpoica Ciencia y Tecnologia Agropecuaria, 18(1), 47–73. Lockhart, B. E. L. (1988). Occurrence of Canna Yellow Mottle Virus in North America. In Acta Horticulturae (Issue 234, pp. 69–72). https://doi.org/10.17660/actahortic.1988.234.7 Majumdar, R., Galewski, P. J., Eujayl, I., Minocha, R., Vincill, E., & Strausbaugh, C. A. (2022). Regulatory Roles of Small Non-coding RNAs in Sugar Beet Resistance Against Beet curly top virus. Frontiers in Plant Science, 12(January). https://doi.org/10.3389/fpls.2021.780877 Massart, S., Chiumenti, M., De Jonghe, K., Glover, R., Haegeman, A., Koloniuk, I., Komínek, P., Kreuze, J., Kutnjak, D., Lotos, L., Maclot, F., Maliogka, V., Maree, H. J., Olivier, T., Olmos, A., Pooggin, M. M., Reynard, J. S., Ruiz-García, A. B., Safarova, D., … Candresse, T. (2019). Virus detection by high-throughput sequencing of small RNAs: Large-scale performance testing of sequence analysis strategies. Phytopathology, 109(3), 488–497. https://doi.org/10.1094/PHYTO-02-18-0067-R Melcher, U., Muthukumar, V., Wiley, G. B., Min, B. E., Palmer, M. W., Verchot-Lubicz, J., Ali, A., Nelson, R. S., Roe, B. A., Thapa, V., & Pierce, M. L. (2008). Evidence for novel viruses by analysis of nucleic acids in virus-like particle fractions from Ambrosia psilostachya. Journal of Virological Methods, 152(1–2), 49–55. https://doi.org/10.1016/j.jviromet.2008.05.030 Mengistu, A. A., & Tenkegna, T. A. (2021). The role of miRNA in plant–virus interaction: a review. Molecular Biology Reports, 48(3), 2853–2861. https://doi.org/10.1007/s11033-021-06290-4 Miozzi, L., Pantaleo, V., Burgyán, J., Accotto, G. P., & Noris, E. (2013). Analysis of small RNAs derived from tomato yellow leaf curl Sardinia virus reveals a cross reaction between the major viral hotspot and the plant host genome. Virus Research, 178(2), 287–296. Mohamed, A., Jin, Z., Osman, T., Shi, N., Tör, M., Jackson, S., & Hong, Y. (2022). Hotspot siRNA Confers Plant Resistance against Viral Infection. Biology, 11(5), 714. https://doi.org/10.3390/biology11050714 Monger, W. A., Adams, I. P., Glover, R. H., & Barrett, B. (2010). The complete genome sequence of Canna yellow streak virus. Archives of Virology, 155(9), 1515–1518. https://doi.org/10.1007/s00705-010-0694-0 Monger, W. A., Harju, V., Skelton, A., Seal, S. E., & Mumford, R. A. (2007). Canna yellow streak virus: A new potyvirus associated with severe streaking symptoms in canna. Archives of Virology, 152(8), 1527–1530. https://doi.org/10.1007/s00705-007-0977-2 Movahedi, A., Zhang, J., Sun, W., Kadkhodaei, S., Mohammadi, K., Almasizadehyaghuti, A., Yin, T., & Zhuge, Q. (2018). Plant small RNAs: Definition, classification and response against stresses. Biologia, 73(3), 285–294. https://doi.org/10.2478/s11756-018-0034-5 Neeleman, L., Linthorst, H. J. M., & Bol, J. F. (2004). Efficient translation of alfamovirus RNAs requires the binding of coat protein dimers to the 3′ termini of the viral RNAs. Journal of General Virology, 85(1), 231–240. https://doi.org/10.1099/vir.0.19581-0 Pooggin, M. M. (2018). Small RNA-Omics for Plant Virus Identification, Virome Reconstruction, and Antiviral Defense Characterization. Frontiers in Microbiology, 9, 2779. https://doi.org/10.3389/fmicb.2018.02779 Rajakaruna, P., Shafiekhani, M., Kim, T., Payton, M., Chauhan, R., & Verchot, J. (2014). Production of discernible disease phenotypes in Canna by five plant viruses belonging to the genera Potyvirus, Cucumovirus and Badnavirus. Plant Pathology, 63(4), 821–830. https://doi.org/10.1111/ppa.12169 Ramos, K., Sivaprasad, Y., Guevara, F., Ochoa-Corona, F., Viera, W., & Flores, F. (2020). Occurrence of potato yellowing virus in naranjilla (Solanum quitoense Lam.) in Ecuador. Journal of Plant Pathology, 102(2), 597–597. https://doi.org/10.1007/s42161-019-00479-0 Redila, C. D., Prakash, V., & Nouri, S. (2021). Metagenomics analysis of the wheat virome identifies novel plant and fungal-associated viral sequences. Viruses, 13(12). https://doi.org/10.3390/v13122457 Roddríguez B., G. A., García Bernal, H. R., Camacho Tamayo, J. H., & Arias G, F. L. (2003). El Almidón de Achira o Sagú (Canna edulis, Ker) Manual Técnico para su Elaboración. In Corpoica Ciencia y Tecnologia Agropecuaria. https://doi.org/10.1134/S106935131112007X Roossinck, M. J. (2017). Deep sequencing for discovery and evolutionary analysis of plant viruses. Virus Research, 239, 82–86. https://doi.org/10.1016/j.virusres.2016.11.019 Ruiz Garcia, L., & Janssen, D. (2020). Epidemiology and control of emerging criniviruses in bean. Virus Research, 280, 197902. https://doi.org/10.1016/j.virusres.2020.197902 Ruiz, L., Simón, A., García, C., Velasco, L., & Janssen, D. (2018). First natural crossover recombination between two distinct species of the family Closteroviridae leads to the emergence of a new disease. PLoS ONE, 13(9), e0198228. https://doi.org/10.1371/journal.pone.0198228 Schäffer, A. A., Hatcher, E. L., Yankie, L., Shonkwiler, L., Brister, J. R., Karsch-Mizrachi, I., & Nawrocki, E. P. (2020). VADR: Validation and annotation of virus sequence submissions to GenBank. BMC Bioinformatics, 21(1), 211. https://doi.org/10.1186/s12859-020-3537-3 Silvestre, R., Fuentes, S., Risco, R., Berrocal, A., Adams, I., Fox, A., Cuellar, W. J., & Kreuze, J. (2020). Characterization of distinct strains of an aphid-transmitted ilarvirus (Fam. Bromoviridae) infecting different hosts from South America. Virus Research, 282, 197944. https://doi.org/10.1016/j.virusres.2020.197944 Singh, K., Jarošová, J., Fousek, J., Chen, H., & Kundu, J. K. (2020). Virome identification in wheat in the Czech Republic using small RNA deep sequencing. Journal of Integrative Agriculture, 19(7), 1825–1833. https://doi.org/10.1016/S2095-3119(19)62805-4 Tafrihi, M., & Hasheminasab, E. (2018). MiRNAs: Biology, Biogenesis, their Web-based Tools, Verdin, E., Wipf-Scheibel, C., Gognalons, P., Aller, F., Jacquemond, M., & Tepfer, M. (2017). Sequencing viral siRNAs to identify previously undescribed viruses and viroids in a panel of ornamental plant samples structured as a matrix of pools. Virus Research, 241, 19–28. https://doi.org/10.1016/j.virusres.2017.05.019 Violle, C., Thuiller, W., Mouquet, N., Munoz, F., Kraft, N. J. B., Cadotte, M. W., Livingstone, S. W., & Mouillot, D. (2017). Functional Rarity: The Ecology of Outliers. Trends in Ecology & Evolution, 32(5), 356–367. https://doi.org/10.1016/j.tree.2017.02.002 Wang, C., Jiang, F., & Zhu, S. (2022). Complex Small RNA-mediated Regulatory Networks between Viruses/Viroids/Satellites and Host Plants. Virus Research, 311(November 2021), 198704. https://doi.org/10.1016/j.virusres.2022.198704 Wick, R. R., Judd, L. M., Gorrie, C. L., & Holt, K. E. (2017). Completing bacterial genome assemblies with multiplex MinION sequencing. Microbial Genomics, 3(10), e000132. https://doi.org/10.1099/mgen.0.000132 Wijayasekara, D., Hoyt, P., Gimondo, A., Dunn, B., Thapa, A., Jones, H., & Verchot, J. (2018). Molecular characterization of two badnavirus genomes associated with Canna yellow mottle disease. Virus Research, 243(October 2017), 19–24. https://doi.org/10.1016/j.virusres.2017.10.001 Wylie, S. J., Coutts, B. A., Jones, M. G. K., & Jones, R. A. C. (2008). Phylogenetic analysis of Bean yellow mosaic virus isolates from four continents: Relationship between the seven 41 groups found and their hosts and origins. Plant Disease, 92(12), 1596–1603. https://doi.org/10.1094/PDIS-92-12-1596 Yang, X., Du, M., Li, S., & Zhou, X. (2021). Coinfection of cotton plants with watermelon mosaic virus and a novel polerovirus in china. Viruses, 13(11). https://doi.org/10.3390/v13112210 Zakubanskiy, A. V., Mitrofanova, I. V., & Chirkov, S. N. (2017). Molecular characterization of viruses infecting canna in Russia. European Journal of Plant Pathology, 149(4), 923–931. https://doi.org/10.1007/s10658-017-1241-6 Zhang, J., Dey, K. K., Lin, B., Borth, W. B., Melzer, M. J., Sether, D., Wang, Y., Wang, I. C., Shen, H., Pu, X., Sun, D., & Hu, J. S. (2017). Characterization of Canna yellow mottle virus in a new host, Alpinia purpurata, in Hawaii. Phytopathology, 107(6), 791–799. https://doi.org/10.1094/PHYTO-04-16-0160-R Zheng, Y., Gao, S., Padmanabhan, C., Li, R., Galvez, M., Gutierrez, D., Fuentes, S., Ling, K.-S., Kreuze, J., & Fei, Z. (2017). VirusDetect: An automated pipeline for efficient virus discovery using deep sequencing of small RNAs. Virology, 500, 130–138. https://doi.org/10.1016/j.virol.2016.10.017 Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ 46 páginas application/pdf application/pdf Bogotá C.I La Selva C.I Nataima Colombia Universidad de los Andes Bogotá (Colombia) Ciencias Biológicas